

1061003030-LC-C

ADVA® 1061003030 Compatible TAA Compliant 1000Base-BX SFP Transceiver (SMF, 1490nmTX/1550nmRX, 120km, LC, DOM)

Features:

- Operating Data Rate up to 1.25Gbps
- 120km with 9/125μm SMF
- Single 3.3V Power Supply
- Hot-Pluggable SFP
- Compliant with SFF-8472
- Compliant with MSA SFP Specifications
- Class 1 Laser Safety Compliant
- Operating Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free

Applications:

- 1000Base-BX Ethernet
- Access and Enterprise

Product Description

This ADVA® 1061003030 compatible SFP transceiver provides 100/1000Base-BX throughput up to 120km over single-mode fiber (SMF) using a wavelength of 1510nmTx/1590nmRx via an LC connector. This bidirectional unit must be used with another transceiver or network appliance of complementing wavelengths. It is guaranteed to be 100% compatible with the equivalent ADVA® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate				1.25	Gbps	
Operating Case Temperature	Тс	0		70	°C	
Storage Temperature	Tstg	-40		+85	°C	
Power Supply Voltage	Vcc	-0.5		3.6	V	
Relative Humidity (Non-Condensing)	RH	5		85	%	
9μm Core Diameter SMF	L			120	km	

Notes:

1. Exceeding any one of these values may destroy the device permanently.

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes			
Supply Voltage		Vcc	3.13	3.3	3.47	V				
Supply Current		Icc			300	mA				
Transmitter										
CML Differential Inputs		VIN	400		1800	mVp-p	1			
Input AC Common	Input AC Common-Mode Voltage		0		25	mV	2			
Input Differential	Input Differential Impedance		90	100	110	Ω	3			
	High		2		Vcc+0.3	V				
Tx_Disable	Low		0		0.8					
	High		2		Vcc+0.3	V	4			
Tx_Fault	Low		0		0.8		5			
Receiver	Receiver									
CML Differential C	IL Differential Outputs VOUT 400 2000		mVp-p	6						
Output Differentia	ifferential Impedance ZOUT 90 100 110 Ω		Ω							
Rx_LOS	High		2		Vcc+0.3		4			
	Low		0		0.8	1	5			
MOD_DEF (0.2)		VOH	2.5		Vcc+0.3	V	7			
		VOL	0		0.5					

Notes:

- 1. AC coupled inputs.
- 2. RMS.
- 3. RIN > $100k\Omega$ @DC.
- 4. lo = 400μ A; Host_Vcc.
- 5. lo = -4.0 mA.
- 6. AC coupled outputs.
- 7. With serial ID.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Center Wavelength	λС	1490	1510	1530	nm		
Spectral Width (-20dB)	Δλ			1	nm		
Side-Mode Suppression Ratio	SMSR	30			dB		
Average Output Power	POUT	0		5	dBm	1	
Extinction Ratio	ER	9			dB		
Rise/Fall Time (20-80%)	Tr/Tf			0.26	ns		
POUT @Tx_Disable Asserted	POUT			-45	dBm		
Output Optical Eye		Compliant with IEEE 802.3					
Receiver							
Center Wavelength	λС	1570	1590	1610	nm		
Receiver Sensitivity	Pmin			-31	dBm	2	
Receiver Overload	Pmax	-6			dBm		
LOS De-Assert	LOSD			-32	dBm		
LOS Assert	LOSA	-45			dBm		
LOS Hysteresis	LOSH	0.5			dB		

Notes:

- 1. Output is coupled into a 9/125μm SMF.
- 2. Minimum average optical power, measured at BER less than $1E^{-12}$, and the measure pattern is PRBS 2^7 -1.

Pin Descriptions

Pin	Symbol	Name/Description	Plug Seq.	Notes
1	VeeT	Transmitter Ground.	1	5
2	Tx_Fault	Transmitter Fault Indication.	3	1
3	Tx_Disable	Transmitter Disable. Module disables on "high" or "open."	3	2
4	MOD_DEF2	Module Definition 2. 2-Wire Serial ID Interface.	3	3
5	MOD_DEF1	Module Definition 1. 2-Wire Serial ID Interface.	3	3
6	MOD_DEF0	Module Definition 0. Grounded within the module.	3	3
7	Rate Select	Not Connected. Function not available.	3	
8	LOS	Loss of Signal.	3	4
9	VeeR	Receiver Ground.	1	5
10	VeeR	Receiver Ground.	1	5
11	VeeR	Receiver Ground.	1	5
12	RD-	Inverted Received Data Out.	3	6
13	RD+	Received Data Out.	3	7
14	VeeR	Receiver Ground.	1	5
15	VccR	3.3 ± 5% Receiver Power.	2	7
16	VccT	3.3 ± 5% Transmitter Power.	2	7
17	VeeT	Transmitter Ground.	1	5
18	TD+	Transmit Data In.	3	8
19	TD-	Inverted Transmit Data In.	3	8
20	VeeT	Transmitter Ground.	1	5

Notes:

- 1. Tx_Fault is an open collector/drain output that should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. When "high," the output indicates a laser fault of some kind. "Low" indicates normal operation. In the "low" state, the output will be pulled to <0.8V.
- 2. Tx_Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\Omega$ to $10k\Omega$ resistor. Its states are:

Low (0V – 0.8V): Transmitter On

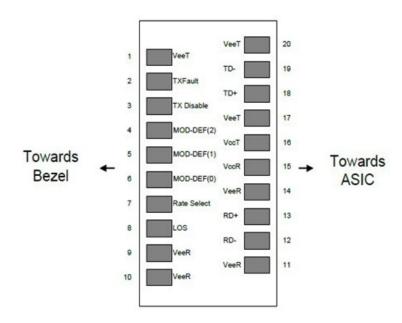
(>0.8V, <2.0V): Undefined

High (2.0V – 3.465V): Transmitter Disabled

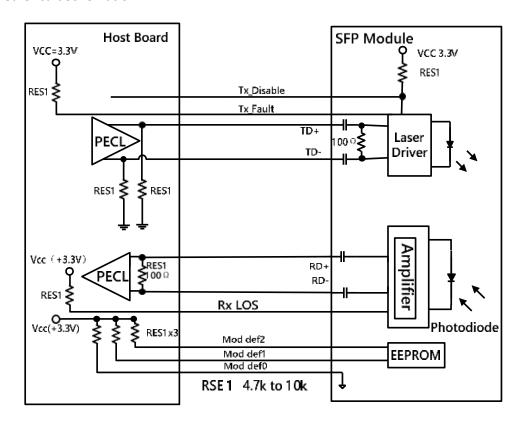
Open: Transmitter Disabled.

3. MOD_DEF0, 1, & 2. These are module definition pins. They should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

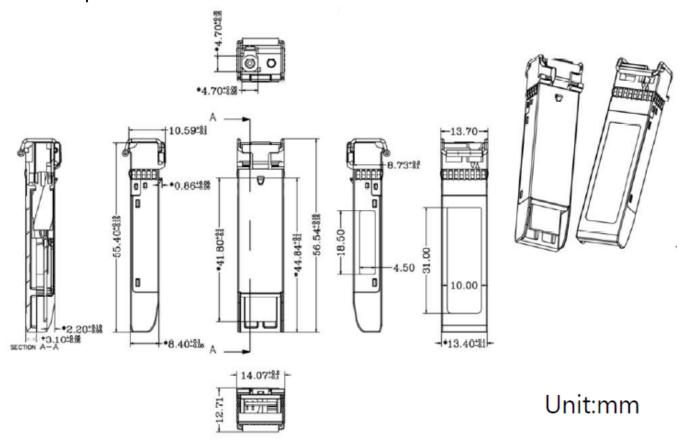
MOD_DEFO is grounded by the module to indicate that the module is present.


MOD_DEF1 is the clock line of 2-wire serial interface for serial ID.

MOD_DEF2 is the data line of 2-wire serial interface for serial ID.


- 4. LOS (Loss of Signal) is an open collector/drain output that should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor. When "high," this output indicates that the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). "Low" indicates normal operation. In the "low" state, the output will be pulled to <0.8V.
- 5. VeeR and VeeT may be internally connected within the SFP module.
- 6. RD-/+. These are the differential receiver outputs. They are AC-coupled, 100Ω differential lines that

- should be terminated with 100Ω (differential) at the user SERDES.
- 7. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin.
- 8. TD-/+. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential terminations inside the module.


Pin-Out Details

Recommended Circuit Schematic

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600