

1100-0532-C

Westermo® 1100-0532 Compatible TAA 100Base-LX SFP Transceiver (MMF, 1310nm, 20km, LC, DOM, -40 to 85C)

Features:

- INF-8074 and SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Industrial Temperature -40 to 85 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 100Base Ethernet
- Access and Enterprise

Product Description

This Westermo® 1100-0532 compatible SFP transceiver provides 100Base-LH throughput up to 40km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Westermo® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. It is built to meet or exceed the specifications of Westermo®, as well as to comply with MSA (Multi-Source Agreement) standards to ensure seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883 Method 3015.
- ESD to the Duplex LC Receptacle: compatible with IEC 61000-4-2.
- Immunity compatible with IEC 61000-4-3.
- EMI compatible with FCC Part 15 Class B EN55022 Class B (CISPR 22B) VCCI Class B.
- Laser Eye Safety compatible with FDA 21CFR 1040.10 and 1040.11 EN60950, EN (IEC) 60825-1,2.
- RoHs compliant with 2002/95/EC 4.1&4.2 2005/747/EC.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5		4.0	V
Storage Temperature	Tstg	-40		85	°C
Operating Humidity	RH	5		85	%
Operating Case Temperature	Тс	-40		85	°C
Data Rate			155		Mbps

Electrical Characteristics (Tc=25°C, Vcc=3.3V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Power Supply Voltage	Vcc	3.14	3.3	3.46	V		
Power Supply Current	Icc		165	300	mA		
Transmitter							
Input Differential Impedance	ZIN	85	100	120	Ω	1	
LVPECL Inputs (Differential)	VIN	500		2400	mVp-p	2	
Receiver							
Output Differential Impedance	ZOUT	85	100	120	Ω		
LVPECL Outputs (Differential)	VOUT	600	800	1600	mVp-p	2	

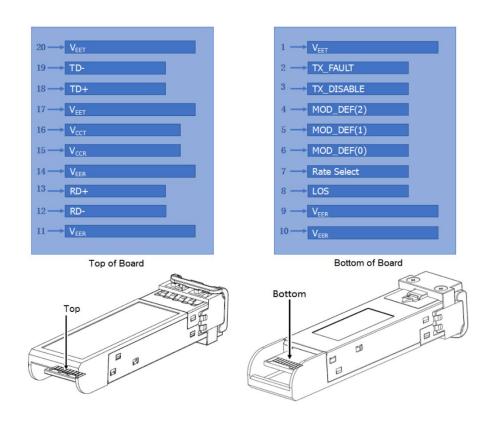
Notes:

- 1. RIN>100k Ω @ DC.
- 2. AC coupled.

Optical Characteristics

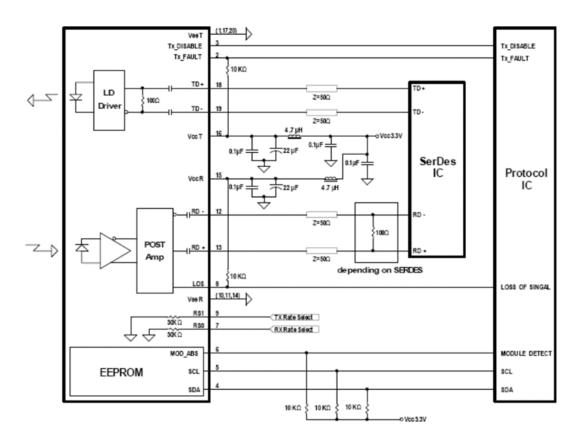
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Average Output Power	PO	-5		0	dBm	1	
Optical Wavelength	λ	1275	1310	1350	nm		
Spectral Width (RMS)	Δλ			3	nm		
Optical Rise/Fall Time	Tr/Tf		250	500	ps	2	
Extinction Ratio	ER	9			dB	3	
Output Optical Eye		IUT-T G.957 Compliant					
Receiver							
Receiver Sensitivity	Pmin			-32	dBm	4	
Receiver Overload	Pmax	0			dBm		
Optical Center Wavelength	λC	1260		1600	nm		
LOS De-Assert	LOSD			-32	dBm		
LOS Assert	LOSA	-45			dBm		
LOS Hysteresis		0.5			dB		

Notes:

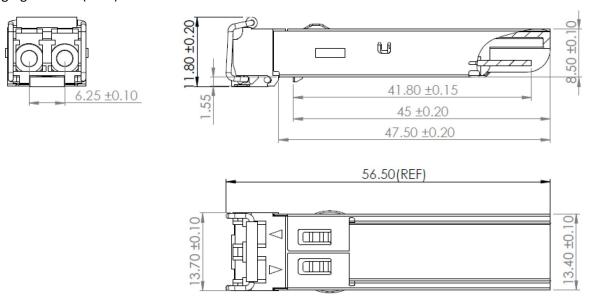

- 1. Average.
- 2. 20-80%.
- 3. Filtered, measured with a PRBS 2^{23} -1 test pattern @155Mbps.
- 4. Minimum average optical power is measured at BER less than $1E^{-12}$ with 2^{23} -1 PRBS and ER=9dB.

Pin Descriptions

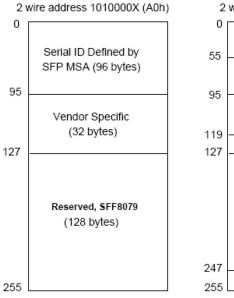
Pin	Symbol	Name/Description	Notes
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	Tx_Fault	Transmitter Fault.	
3	Tx_Disable	Transmitter Disable. Laser output disabled on "high" or "open."	2
4	MOD_DEF(2)	Module Definition 2. Data Line for Serial ID.	3
5	MOD_DEF(1)	Module Definition 1. Clock Line for Serial ID.	3
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	3
7	Rate Select	No Connection Required.	
8	LOS	Loss of Signal Indication. "Logic 0" indicates normal operation.	4
9	VeeR	Receiver Ground (Common with Transmitter Ground).	1
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted Data Out. AC Coupled.	
13	RD+	Receiver Non-Inverted Data Out. AC Coupled.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Non-Inverted Data In. AC Coupled.	
19	TD-	Transmitter Inverted Data In. AC Coupled.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1

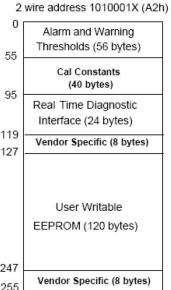

Notes:

- 1. The circuit ground is internally isolated from the chassis ground.
- 2. Laser output is disabled on Tx_Disable>2.0V or open, enabled on Tx_Disable<0.8V.
- 3. Should be pulled up with $4.7k\Omega-10k\Omega$ on the host board to a voltage between 2.0V and 3.6V. MOD_DEF (1) pulls the line low to indicate that the module is plugged in.
- 4. LOS is an open collector output. Should be pulled up with $4.7k\Omega-10k\Omega$ on the host board to a voltage between 2.0V and 3.6V. "Logic 0" indicates normal operation. "Logic 1" indicates a loss of signal.


Pin-Out of Connector Block on the Host Board

Recommended Circuit Schematic


Mechanical Specifications


Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

EEPROM Information

EEPROM memory map-specific data field description is as below:

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600