

3FE47581BD-C

Alcatel-Lucent Nokia® 3FE47581BD Compatible TAA Combo PON OLT (SMF, 1577nmTx/1270nmRx and 1490nmTx/1310nmRx, N2/C+, SC, DOM, -40 to 85C)

Features:

- Comply with ITU-T G.984.5 (2014)/Amd.2 (10/2020)
- GPON & XGS-PON N2 OPL Class C+
- Comply with SFF-8472 Rev 11
- Comply with SFP-DD Hardware Rev. 4.2
- Single-mode Fiber
- SC Optical Connector
- Operating Temperature: -40 to 85 Celsius
- Hot Pluggable
- RoHS compliant and Lead Free

Applications:

XGS-PON and GPON Combo OLT N2 C+

Product Description

This Alcatel-Lucent Nokia® 3FE47581BD Compatible Combo PON OLT class N2/C+ SFP-DD transceiver provides 9.95Gbs/9.95Gbs and 2.48Gbs/1.24Gbs throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1577nmTx/1270nmRx and 1490nmTx/1310nmRx via a SC connector. It can operate at temperatures between -40 and 85C. This transceiver is Trade Agreements Act (TAA) compliant. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	0		3.6	V	
Storage Ambient Temperature	Ts	-40		+85	°C	
Operating Case Temperature	Тс	-40		85	°C	
Operating Relative Humidity	RH	5		+85	%	
XGS Rx Optical Isolation (From external 1290- 1650nm)	ISO	-30			dB	
Reflectance of XGS Rx (1260- 1280nm)				-12	dB	
GPON Rx Optical Isolation (From external 1260- 1280nm)	ISO	-30			dB	
GPON Rx Optical Isolation (From external 1342- 1650nm)	ISO	-30			dB	
Reflectance of GPON Rx (1290- 1330 nm)				-20	dB	
Differential Power Range				20	dB	1

Notes:

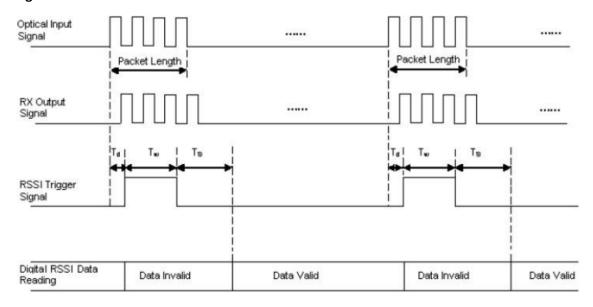
1. Power differential between sequential ONU bursts.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	VCC	3.14	3.3	3.47	V	
Power Consumption				4	W	
Transmitter (9.953G)						
Data Input Differential Swing	VIN	200		850	mVp-p	
Input Differential Impedance	ZIN		100		Ω	
Tx_Disable Voltage	VIL	0		0.8	V	
	VIH	2		3.3	V	
Transmitter Fault Voltage - Low	VTF, L	0		0.4	V	
Transmitter Fault Voltage - High	VTF, H	2.4		VCC	V	
Transmitter (2.488G)						
Data Input Differential Swing	VIN	200		850	mVp-p	
Input Differential Impedance	ZIN		100		Ω	
Tx_Disable Voltage	VIL	0		0.8	V	
	VIH	2		3.3	V	
Transmitter Fault Voltage - Low	VTFI, L	0		0.4	V	
Transmitter Fault Voltage - High	VTFI, H	2.4		VCC	V	

Receiver (9.953G)							
Data Output Differential Swing	VOUT	300		800	mVP-P		
Signal Detected Voltage_Low	VSD, L	0		0.4	V		
Signal Detected Voltage_High	VSD, H	2.4		VCC	V		
Receiver (2.488G)							
Data Output Differential Swing	VOUT	300		800	mVP-P		
Signal Detected Voltage_Low	VSD, L	0		0.4	V		
Signal Detected Voltage_High	VSD, H	2.4		VCC	V		
Receiver (1.244G)							
Data Output Differential Swing	VOUT	300		800	mVP-P		
Signal Detected Voltage_Low	VSD, L	0		0.4	V		
Signal Detected Voltage_High	VSD, H	2.4		VCC	V		

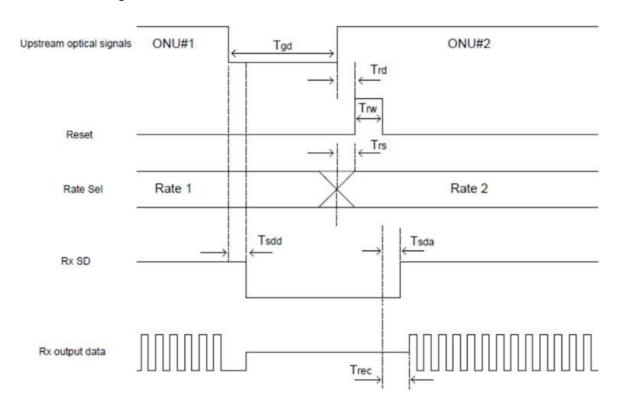
Optical Characteristics


Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter (9.953G)							
Centre Wavelength	λC	1575	1577	1580	nm		
Side Mode Suppression Ratio	SMSR	30			dB		
Average Launch Power	Аор	5		8	dBm		
Average Launch Power-OFF	POFF			-39	dBm		
Extinction Ratio	ER	8.2			dB		
Transmitter Tolerance to Reflected Power		-15			dB		
Eye Diagram		ITU-T	G.9807.1 Com	pliant			
Transmitter (2.488G)							
Centre Wavelength	λC	1480	1490	1500	nm		
Side Mode Suppression Ratio	SMSR	30			dB		
Average Launch Power	Аор	3		7	dBm		
Average Launch Power-OFF	POFF			-40	dBm		
Extinction Ratio	ER	8.2			dB		
Transmitter Tolerance to Reflected Power		-15			dB		
Eye Diagram		ITU-T G.984.2 Compliant					
Receiver (9.953G)							
Operating Wavelength	λC	1260	1270	1280	nm		
Sensitivity	PSEN			-29	dBm	1	
Saturation	PSAT	-8			dBm	1	

Signal Detected De-assert Level	Psdd	-45			dBm	
Signal Detected Assert Level	Psda			-30	dBm	
Max Optical Input	Pdamage			0	dBm	
Receiver (2.488G)						
Operating Wavelength	λC	1260	1270	1280	nm	
Sensitivity	PSEN			-30.5	dBm	2
Saturation	PSAT	-10			dBm	2
Signal Detected De-assert Level	Psdd	-45			dBm	
Signal Detected Assert Level	Psda			-31	dBm	
Max Optical Input	Pdamage			0	dBm	
Receiver (1.244G)						
Operating Wavelength	λC	1290	1310	1330	nm	
Sensitivity	PSEN			-32	dBm	3
Saturation	PSAT	-12			dBm	3
Signal Detected De-assert Level	Psdd	-45			dBm	
Signal Detected Assert Level	Psda			-33	dBm	
Max Optical Input	Pdamage			0	dBm	

Notes:

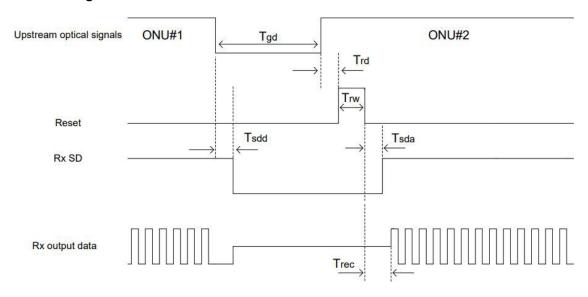
- 1. Measured with PRBS 2³¹-1 test pattern @9.953Gbps and ER=6dB BER =10⁻³.
- 2. Measured with PRBS 2^{23} -1 test pattern @2.488Gbps and ER=8.2dB, BER= 10^{-4} .
- 3. Measured with PRBS 2^{23} -1 test pattern @1.244Gbps and ER=8.2dB, BER= 10^{-4} .


RSSI Timing

RSSI Timing Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Packet Length		575			ns	
RSSI Trigger Delay	Td	100			ns	
RSSI Trigger Width	Tw	500			ns	
RSSI Sampling Time	TSAMPLE	500			ns	
Delay Before Read	Ts	500			us	

XGSPON RX Burst Timing

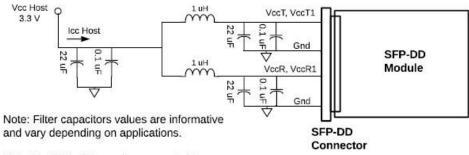


Parameters	Symbol	Min	Тур	Max	Units	Notes
Guard Time	Tgd	51.2			ns	
Reset Delay	Trd	0			ns	1
Reset Width	Trw	25.6			ns	
RateSel Setup Time	Trs	5			ns	2
SD Assert Time	Tsda	0		51.2	ns	
SD De-assert Time	Tsdd		100		ns	3
Data Recovery Time	Trec	0	51.2	100	ns	

Notes:

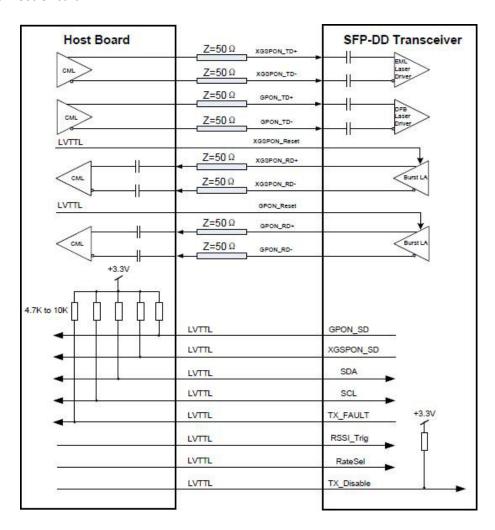
- 1. Reset pulse is suggested to be fully inside the preamble.
- 2. The polarity of RateSel signal could be customized, high = 10G rate, low = 2.5G rate by default.
- 3. Signal detect auto reset function is applied. The signal detects de-assert time forced by auto reset is typically 100ns and could short to about 12.8ns with additional reset pulse.

GPON Rx Burst Timing



Parameters	Symbol	Min	Тур	Max	Units	Notes
Guard Time	Tgd	25.6			ns	
Reset Delay	Trd	0			ns	1
Reset Width	Trw	12.8			ns	
SD Assert Time	Tsda	0	25.6	51.2	ns	
SD De-assert Time	Tsdd		100		ns	2
Data Recovery Time	Trec	0	25.6	100	ns	

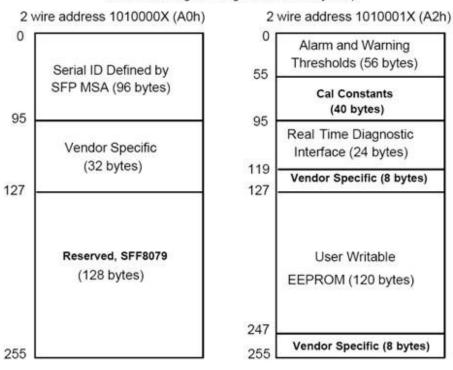
Notes:


- 1. Reset pulse is suggested to be fully inside the preamble.
- 2. Signal detect auto reset function is applied. The SD De-assert time forced by auto reset is typically 100ns and could short to about 12.8ns with additional reset pulse.

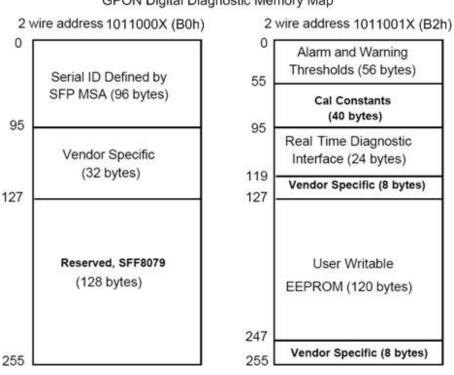
Recommended Host Board Power Supply Filtering Network

Note: VccT, VccT1 may be connected to VccR, VccR1 provided the applicable derating of the maximum current limit is used.

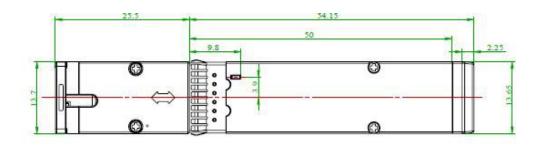
Recommended Host Circuit

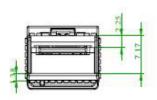

Pin Descriptions

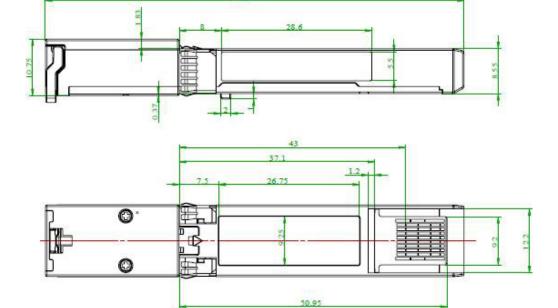
Pin	Logic	Symbol	Name/Description	Notes
1	LVTTL-I	Rate_S1	2488G = Low, 9.953G = High.	
2	LVTTL-O	TX_Fault1	XGS Transmit fault, active high.	
3	LVTTL-I	Tx_Disable1	Active high to disable XGSPON.	
4	LVTTL-I/O	SDA	2-Wire serial interface SDA.	
5	LVTTL-I	SCL	2-Wire serial interface SCL.	
6		MOB_ABS	Module Ground.	
7	LVTTL-I	RESET 1	Reset for XGSPON LA, active High.	
8	LVTTL-O	Rx_SD1	XGS Receiver signal detect, logic 1 indicates normal operation.	
9	LVTTL-I	RSSI_Trigger 1	XGS RSSI trigger input, active high.	
10		GND	Module Ground.	
11		GND	Module Ground.	
12	CML-O	RD1-	Inverted XGSPON received data output, DC coupling.	
13	CML-O	RD1+	XGSPON received data output, DC coupling.	
14		GND	Module Ground.	
15		VCC	+3.3V Power supply.	
16		VCC	+3.3V Power supply.	
17		GND	Module Ground.	
18	CML-I	TD1+	XGS transmit data input, AC coupling.	
19	CML-I	TD1-	Inverted XGS transmit data input, AC coupling.	
20		GND	Module Ground.	
21		GND	Module Ground.	
22	LVTTL-O	TX_Fault2	GPON Transmit fault, active high.	
23	LVTTL-I	Tx_Disable2	Active high to disable GPON.	
24		NC	Reserved.	
25		NC	Reserved.	
26		NC	Reserved.	
27	LVTTL-I	RESET2	Reset for GPON, active High.	
28	LVTTL-O	Rx_SD2	GPON Receiver signal detect, logic 1 indicates normal operation.	
29	LVTTL-I	RSSI_Trigger 2	GPON RSSI trigger input, active high.	
30		GND	Module Ground.	
31		GND	Module Ground.	
32	CML-O	RD2-	Inverted GPON received data output, DC coupling.	
33	CML-O	RD2+	GPON received data output, DC coupling.	
34		GND	Module Ground.	
35		VCC	+3.3V Power supply.	
36		VCC	+3.3V Power supply.	
37		GND	Module Ground.	
38	CML-I	TD2+	GPON transmit data input, AC coupling.	


39	CML-I	TD2-	Inverted GPON transmit data input, AC coupling.	
40		GND	Module Ground.	

EEPROM Definitions


XGSPON Digital Diagnostic Memory Map




GPON Digital Diagnostic Memory Map

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600