Pro**Labs**

CFP2-100GB-ER4-C

MSA and TAA Complaint CFP2-100GB-ER4 Compatible TAA 100GBase-ER4 CFP2 Transceiver (SMF, 1310nm, 40km, LC, DOM)

Features:

- CFP MSA 1.0 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

• 100GBase Ethernet

Product Description

This MSA Compliant CFP2 transceiver provides 100GBase-ER4 throughput up to 40km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 051623

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	85	°C
Supply Voltage	Vcc	-0.5	3.6	V
Operating Relative Humidity	RH	0	85	%

Note:

1. Exceeding any one of these values may destroy the device immediately.

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating Case Temperature	ТС	0		70	°C
Power Supply Voltage	Vcc	3.14	3.3	3.46	V
Data Rate	DR		103.2	112	Gb/s

Electrical Characteristics

Parameter			Symbol	Min.	Тур.	Max.	Unit	Notes
Voltage Supply Electr	ical Char	racteristics						
Supply Current	Tx Se	ction	lcc	A			3.75	1
	Rx Se	ction						
Power Supply Noise			Vrip				2% DC	1MHz
							3% 1	10MHz
Total Dissipation	Class	1					3	
Power	Class		Pw	w			6	_
	Class	-					9	_
	Class						12	
Low Power Mode Dis	-		Plow	W			2	
Inrush Current	Class1	and	I-inrush	mA/usec	100		100	
Turn-off Current Inrush Current	Class2 Class3	and	I-turnoff I-inrush	mA/usec mA/usec	-100		200	
Turn-off Current	Class5	anu	I-turnoff	mA/usec	-200		200	
Different Signal Elect		racteristics	1 turnon	mAy usee	200			
Single Ended Data Ing				mV	20		525	
Single Ended Data Ou		-		mV	180		385	
Differential Signal Ou	-			Ω	80		120	
Differential Signal Inp				Ω	80		120	
3.3V LVCMOS Electric	cal Chara	cteristics						
Input High Voltage			3.3VIH	V	2.0		Vcc+0.3	
Input Low Voltage			3.3VIL	V	-0.3		0.8	
Input Leakage Curren	t		3.3IIN	uA	-10		+10	
Output High Voltage	(IOH=10	0uA)	3.3VOH	V	Vcc-0.2			
Output Low Voltage	(IOL=100	uA)	3.3VOL	V			0.2	
Minimum Pulse Widt Signal	h of Con	trol Pin	t_CNTL	us	100			
1.2V LVCMOS Electric	cal Chara	cteristics						
Input High Voltage			1.2VIH	V	0.84		1.5	
Input Low Voltage		1.2VIL V	0.3	1.2VIL V		0.36		
Input Leakage Current		1.2IIN	uA	-100		+100		
Output High Voltage	Output High Voltage		1.2VOH	V	1.0		1.5	
Output Low Voltage			1.2VOL	V	-0.3		0.2	
Output High Current			1.2IOH	mA			-4	
Output Low Current			1.2IOL	mA	+4			
Input Capacitance			Ci	pF			10	

High Speed Electrical Characteristics

Parameter	Symbol	Unit	Min.	Max.	Notes		
Impedance	Zd	Ω	90	110			
Frequency		MHz	161.1328125		161.1328125		1/64 of electrical lane rate
Frequency Stability	∆f	ppm	-100	100	For Ethernet		
			-20	20	For Telecom		
Differential Voltage	VDIFF	mV	400	900	Peak to Peak Differential		
Common mode noise (rms)		mV		17.5			
RMS jitter		ps		10	Random Jitter Over frequency band of 10KHZ <f<10mhz< th=""></f<10mhz<>		
Clock Duty Cycle		%	40	60			

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Signaling Rate per Lane		25.78125 ±	100 ppm		GBd	9
		27.9525 ±2	0 ppm		GBd	OTU4
Four Lane Wavelength Range	λ1	1294.53	1295.56	1296.59	nm	
	λ2	1299.02	1300.05	1301.09	nm	
	λ3	1303.54	1304.58	1305.63	nm	
	λ4	1308.09	1309.14	1310.19	nm	
Total launch power				8.9	dBm	9
Average launch power, each lane	Pavg	-2.9		2.9	dBm	2
Optical modulation amplitude, each lane (OMA)2	OMA	0.1		4.5	dBm	
Difference in launch power between any two lanes (OMA)				3.6	dB	
Extinction ratio	ER	8			dB	9
Side-mode suppression ratio	SMSR	30			dB	
Transmitter and dispersion penalty, each lane	TDP			2.5	dB	
Optical return loss tolerance				20	dB	
Transmitter reflectance3				-12	dB	
Transmitter eye mask {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4, 0	0.45, 0.25, 0.28	3, 0.4}		9
Receiver			_			
Receive Rate for Each Lane			25.78125	27.9525	Gbps	
Overload Input Optical Power	Pmax	5.5			dBm	3
Average Receive Power for Each Lane	Pin	-16		4.5	dBm	4, 5 (-

					20.9)
Receive Power in OMA for Each Lane	PinOMA		4.5	dBm	
Difference in Receive Power in OMA between Any Two Lanes			4.5	dBm	
Receiver Sensitivity in OMA for Each Lane	SOMA		-16	dBm	6 (-21.4)
Stressed Receiver Sensitivity in OMA for Each Lane			-12	dBm	7,8 (- 17.9)

Notes:

- 1. The supply current includes CFP2 module's supply current and test board working current.
- 2. Average launch power, each lane (min) is informative for 100GBase-LR4, not the principal indicator of signal strength.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level
- 4. The average receive power, each lane (max) for 100GBASE-ER4 is larger than the 100BASE-ER4 transmitter value to allow compatibility with 100BASE-LR4 units at short distances
- Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance
- 6. Receiver sensitivity (OMA), each lane (max) is informative
- 7. Measured with conformance test signal at TP3 for BER=10-12
- 8. Conditions of stressed receiver sensitivity test: vertical eye closure penalty for each lane is 1.8dB; stressed eye J2 jitter for each lane is 0.3UI; stressed eye J9 jitter for each lane is 0.47UI.
- 9. 100GBase-ER4

Pin Descriptions

Pin	Name	I/O	Logic	Description
1	GND			
2	(TX_MCLKn)	0	CML	For optical waveform testing. Not for normal use.
3	(TX_MCLKp)	0	CML	For optical waveform testing. Not for normal use.
4	GND			
5	N.C			No Connect
6	N.C			3.3V ± 5%
7	3.3V_GND			3.3V Module Supply Voltage Return Ground, can be separate or tied together with Signal Ground
8	3.3V_GND			3.3V Module Supply Ground, internally connected to Signal Ground
9	3.3V			3.3V Module Supply Voltage
10	3.3V			Module Vendor I/O B, NC
11	3.3V			"1" or NC = transmitter disabled, "0" = transmitter enabled
12	3.3V			"1" = loss of signal (low optical signal), "0" = normal condition
13	3.3V_GND			3.3V Module Supply Voltage Return Ground, can be separate or tied together with Signal Ground
14	3.3V_GND			"1" or NC = module in low power (safe) mode, "0" = power-on enabled
15	VND_IO_A	I/O		Module Vendor I/O A. Do Not Connect!
16	VND_IO_B	I/O		Module Vendor I/O A. Do Not Connect!
17	PRG_CNTL1	1	LVCMOS w/ PUR	Programmable Control 1 set over MDIO, MSA Default: TRXIC_RSTn, TX & RX ICs reset, "0": reset, "1" or NC: enabled = not used
18	PRG_CNTL2		LVCMOS w/ PUR	Programmable Control 2 set over MDIO, MSA Default: Hardware Interlock LSB, "00": ≤3W, "01": ≤6W, "10": ≤9W, "11" or NC: ≤12W = not used
19	PRG_CNTL3	I	LVCMOS w/ PUR	Programmable Control 2 set over MDIO, MSA Default: Hardware Interlock LSB, "00": ≤3W, "01": ≤6W, "10": ≤9W, "11" or NC: ≤12W = not used
20	PRG_ALRM1	0	LVCMOS	Programmable Alarm 1 set over MDIO, MSA Default: HIPWR_ON, "1": module power up completed, "0": module not high powered up
21	PRG_ALRM2	0	LVCMOS	Programmable Alarm 2 set over MDIO, MSA Default: MOD_READY, "1": Ready, "0": not Ready.
22	PRG_ALRM3	0	LVCMOS	Programmable Alarm 3 set over MDIO, MSA Default: MOD_FAULT, fault detected, "1": Fault, "0": No Fault
23	GND			
24	TX_DIS	I	LVCMOS w/ PUR	Transmitter Disable for all lanes, "1" or NC = transmitter disabled, "0" = transmitter enabled
25	RX_LOS	0	LVCMOS	Receiver Loss of Optical Signal, "1": low optical signal, "0": normal condition
26	MOD_LOPWR	I	LVCMOS w/ PUR	Module Low Power Mode. "1" or NC: module in low power (safe) mode, "0": power-on enabled
27	MOD_ABS	0	GND	Module Absent. "1" or NC: module absent, "0": module present, Pull Up Resistor on Host
28	MOD_RSTn	I	LVCMOS w/ PDR	Module Reset. "0" resets the module, "1" or NC = module enabled, Pull Down Resistor in Module
29	GLB_ALRMn	0	LVCMOS	Global Alarm. "0": alarm condition in any MDIO Alarm register, "1": no alarm condition, Open Drain, Pull Up Resistor on Host

31	MDC	1	1.2VCMOS	Management Data Clock (electrical specs as per IEEE Std 802.3ae-2008 and ba-2010)
32	MDIO	I/O	1.2VCMOS	Management Data I/O bi-directional data (electrical specs as per IEEE Std 802.3ae-2008 and ba-2010)
33	PRTADR0	1	1.2VCMOS	MDIO Physical Port address bit 0
34	PRTADR1	1	1.2VCMOS	MDIO Physical Port address bit 1
35	PRTADR2	1	1.2VCMOS	MDIO Physical Port address bit 2
36	VND_IO_C	I/O		Module Vendor I/O C. Do Not Connect!
37	VND_IO_D	I/O		Module Vendor I/O D. Do Not Connect!
38	VND_IO_E	I/O		Module Vendor I/O E. Do Not Connect!
39	3.3V_GND			
40	3.3V_GND			
41	3.3V			3.3V Module Supply Voltage
42	3.3V			3.3V Module Supply Voltage
43	3.3V			3.3V Module Supply Voltage
44	3.3V			3.3V Module Supply Voltage
45	3.3V_GND			
46	3.3V_GND			
47	N.C			No Connect
48	N.C			
49	GND			
50	(RX_MCLKn)	0	CML	For optical waveform testing. Not for normal use.
51	(RX_MCLKp)	0	CML	For optical waveform testing. Not for normal use.
52	GND			
53	GND			
54	N.C.			
55	N.C.			
56	GND			
57	RX0p			25 Gbps receiver data; Lane 0
58	RX0n			25 Gbps receiver data bar; Lane 0
59	GND			
60	RX1p			25 Gbps receiver data; Lane 1
61	RX1n			25 Gbps receiver data bar; Lane 1
62	GND			
63	N.C.			
64	N.C.			
65	GND			
66	N.C.			
67	N.C.			
68	GND			
69	RX2p			25 Gbps receiver data; Lane 2
70	RX2n			25 Gbps receiver data bar; Lane 2
71	GND			
72	RX3р			25 Gbps receiver data; Lane 3

73	RX3n		25 Gbps receiver data bar; Lane 3
74	GND		
75	N.C.		
76	N.C.		
77	GND		
78	(REFCLKp)	CML	Module reference clock. No connect.
79	(REFCLKn)	CML	Module reference clock. No connect.
80	GND		
81	N.C.		
82	N.C.		
83	GND		
84	ТХ0р		25 Gbps transmitter data; Lane 0
85	TX0n		25 Gbps transmitter data bar; Lane 0
86	GND		
87	TX1p		25 Gbps transmitter data; Lane 1
88	TX1n		25 Gbps transmitter data bar; Lane 1
89	GND		
90	N.C.		
91	N.C.		
92	GND		
93	N.C.		
94	N.C.		
95	GND		
96	ТХ2р		25 Gbps transmitter data; Lane 2
97	TX2n		25 Gbps transmitter data bar; Lane 2
98	GND		
99	ТХ3р		25 Gbps transmitter data; Lane 3
100	TX3n		25 Gbps transmitter data bar; Lane 3
101	GND		
102	N.C.		
103	N.C.		
104	GND		

Hardware Control Pins

The CFP2 Module support real-time control functions via hardware pins, listed in the following.

Pin	Symbol	Description	I/O	Logic	Н	Ļ	Pull-up/down
17	PRG_CNTL1	Programmable Control 1 MSA De- fault: TRXIC_RS Tn, TX&RX ICs reset, "0": reset;"1"	I	3.3V LVCMOS	per CFP MSA Management Interface		Pull-Up Note1
18	PRG_CNTL2	Programmable Control 2 MSA De- fault: Hardware Interlock LSB	I	3.3V LVCMOS	Specification		Pull-Up Note1
19	PRG_CNTL3	Programmable Control 3 MSA De- fault: Hardware Interlock MSB	I	3.3V LVCMOS			Pull-Up Note1
26	MOD_LOPW R	Module Low Power Mode	1	3.3V LVCMOS Low Power Enable Pull-Up	Low Power	Enable	Pull-Up Note1
28	MOD_RSTn	Module Reset (Invert)	I	3.3V LVCMOS	Enable	Reset	Pull-Down Note2

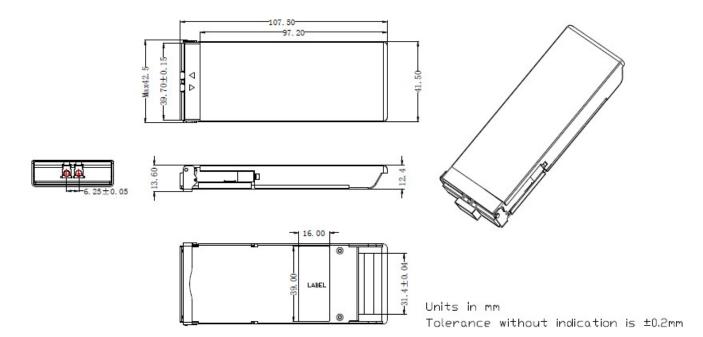
Notes:

- 1. Pull-Up resistor (4.7KOhm to 10 KOhm) is located within the CFP2 module
- 2. Pull-Down resistor (4.7KOhm to 10 kOhm) is located within the CFP2 module

Hardware Alarm Pins

The CFP2 Module supports alarm hardware pins listed in the following

Pin	Symbol	Description	I/O	Logic	Н	L	Pull-up/down
20	PRG_ALR M1	Programmable Alarm 1 MSA Default: HIPWR_ON	0	3.3V LVCMOS	Active High per MDIO		
21	PRG_ALR M2	Programmable Alarm 2 MSA default: MOD_READY, Ready State has been reached	0	3.3V LVCMOS	document		
22	PRG_ALR M3	Programmable Alarm 3 MSA Default: MOD_FAULT	0	3.3V LVCMOS			
27	MOD_ABS	Module Absent	0	3.3V LVCMOS	Absent	Present	Pull-Down Note1
25	RX_LOS	Receiver Loss of Signa	0	3.3V LVCMOS	Loss of Signal	ОК	


Note:

1. Pull-Down resistor (<1000hm) is located within the CFP2 module. Pull-up should be located on the host

CFP2 Lane Assignment

Lane	Center Frequency	Center Wavelength	Wavelength Range
LO	231.4 THz	1295.56 nm	1294.53 to 1296.59 nm
L1	230.6 THz	1300.05 nm	1299.02 to 1301.09 nm
L2	229.8 THz	1304.58 nm	1303.54 to 1305.63 nm
L3	229.0 THz	1309.14 nm	1308.09 to 1310.19 nm

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information ProLabs US Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600