

#### CWDM-SFP-1350-C

Cisco® CWDM-SFP-1350 Compatible TAA 1000Base-CWDM SFP Transceiver (SMF, 1350nm, 100km, LC)

#### **Features:**

- INF-8074 and SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free



#### **Applications:**

- Gigabit Ethernet over CWDM
- 1x Fibre Channel
- Access, Metro and Enterprise

#### **Product Description**

This Cisco® CWDM-SFP-1350 compatible SFP transceiver provides 1000Base-CWDM throughput up to 100km over single-mode fiber (SMF) at a wavelength of 1350nm using an LC connector. It is guaranteed to be 100% compatible with the equivalent Cisco® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. It is built to meet or exceed the specifications of Cisco®, as well as to comply with MSA (Multi-Source Agreement) standards to ensure seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")



# **Absolute Maximum Ratings**

| Parameter             | Symbol | Min.  | Тур. | Max.  | Unit | Notes |
|-----------------------|--------|-------|------|-------|------|-------|
| Data Rate             | DR     | 0.622 |      | 1.25  | Gbps |       |
| Bit Error Rate        | BER    |       |      | 10-12 |      |       |
| Operating Temperature | Тс     | 0     |      | 70    | C°   | 1, 4  |
| Storage Temperature   | Tstg   | -40   |      | 85    | C°   | 2     |
| Maximum Voltage       | VMAX   | -0.5  |      | 4     | V    | 3     |

### Notes:

- 1. Case temperature.
- 2. Ambient temperature.
- 3. For the electrical power interface.
- 4. Commercial temperature.

### **Electrical Characteristics**

| Parameter                      | Symbol  | Min.    | Тур. | Max.     | Unit | Notes |  |
|--------------------------------|---------|---------|------|----------|------|-------|--|
| Supply Current                 | Icc     |         | 200  | 300      | mA   | 1     |  |
| Input Voltage                  | Vcc     | 3.14    | 3.3  | 3.46     | V    |       |  |
| Transmitter                    |         |         |      |          |      |       |  |
| Input Differential Impedance   | RIN     |         | 100  |          | Ω    |       |  |
| Single-Ended Data Input Swing  | VIN,pp  | 250     |      | 1200     | mV   |       |  |
| Transmit Disable Voltage       | VD      | Vcc-1.3 |      | Vcc      | V    |       |  |
| Transmit Enable Voltage        | VEN     | Vee     |      | Vee+0.8  | V    |       |  |
| Transmit Disable Assert Time   |         |         |      | 10       | us   |       |  |
| Receiver                       |         |         |      |          |      |       |  |
| Single-Ended Data Output Swing | VOUT,pp | 300     | 400  | 800      | mV   |       |  |
| Data Output Rise/Fall Time     | Tr/Tf   |         | 100  | 175      | ps   |       |  |
| LOS Asserted                   | VLOSA   | Vcc-0.5 |      | Host_Vcc | V    |       |  |
| LOS De-Asserted                | VLOSD   | Vee     |      | Vee+0.5  | V    |       |  |

# Notes:

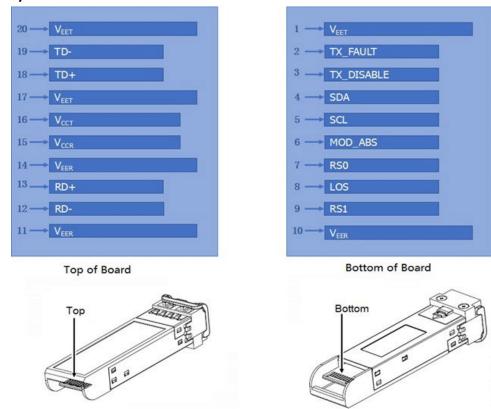
1. For the electrical power interface.

**Optical Characteristics** 

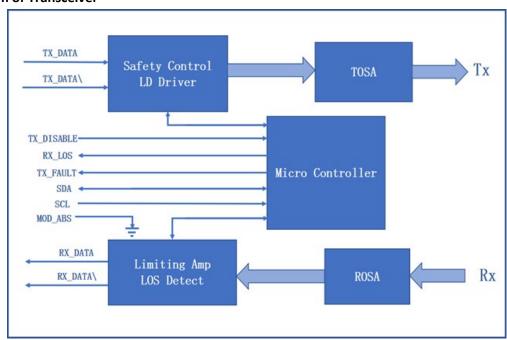
| Parameter                       | Symbol | Min.                      | Тур. | Max. | Unit  | Notes |
|---------------------------------|--------|---------------------------|------|------|-------|-------|
| Transmitter                     |        |                           |      |      |       |       |
| Output Optical Power            | PTX    | 0                         |      | 5    | dBm   | 1     |
| Optical Center Wavelength       | λC     | 1345                      | 1351 | 1357 | nm    |       |
| Extinction Ratio                | ER     | 9                         |      |      | dB    |       |
| Side-Mode Suppression Ratio     | SMSR   | 30                        |      |      | dB    |       |
| Spectral Width (-20dB)          | Δλ     |                           |      | 1    | nm    |       |
| Optical Rise/Fall Time (20-80%) | Tr/Tf  |                           |      | 180  | ps    |       |
| Relative Intensity Noise        | RIN    |                           |      | -120 | dB/Hz |       |
| Transmitter Jitter (Pk-Pk)      | TJ     |                           |      | 100  | ps    |       |
| Output Eye                      |        | Compliant with IEEE 802.3 |      |      |       |       |
| Receiver                        |        |                           |      |      |       |       |
| Optical Center Wavelength       | λC     | 1270                      |      | 1620 | nm    |       |
| Receiver Sensitivity            | Rx_SEN |                           |      | -32  | dBm   | 2     |
| Receiver Overload               | POL    | -7                        |      |      | dBm   |       |
| LOS Assert                      | LOSA   | -42                       |      |      | dBm   |       |
| LOS De-Assert                   | LOSD   |                           |      | -32  | dBm   |       |
| LOS Hysteresis                  | LOSH   | 0.5                       |      |      | dB    |       |

### Notes:

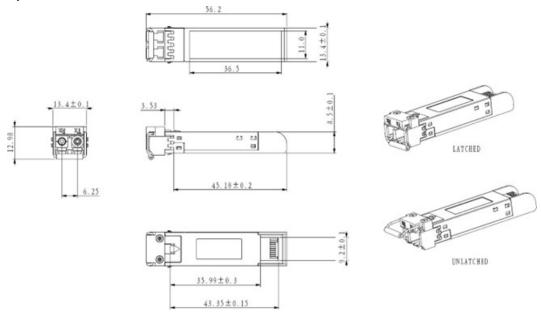
- 1. Average launch power.
- 2. Measured with a  $2^7$ -1 test pattern over 120km @1.25Gbps with a BER<10<sup>-12</sup>.


## **Pin Descriptions**

| Pin | Symbol     | Notes                                                            |   |  |
|-----|------------|------------------------------------------------------------------|---|--|
| 1   | VeeT       | Transmitter Ground (Common with Receiver Ground).                | 1 |  |
| 2   | Tx_Fault   | Transmitter Fault.                                               |   |  |
| 3   | Tx_Disable | Transmitter Disable. Laser output disabled on "high" or "open."  | 2 |  |
| 4   | SDA        | 2-Wire Serial Interface Data.                                    | 3 |  |
| 5   | SCL        | 2-Wire Serial Interface Clock.                                   | 3 |  |
| 6   | MOD_ABS    | Module Absent. Grounded within the module.                       | 3 |  |
| 7   | RS0        | No Connection Required.                                          |   |  |
| 8   | LOS        | Loss of Signal Indication. "Logic 0" indicates normal operation. | 4 |  |
| 9   | RS1        | No Connection Required.                                          | 1 |  |
| 10  | VeeR       | Receiver Ground (Common with Transmitter Ground).                | 1 |  |
| 11  | VeeR       | Receiver Ground (Common with Transmitter Ground).                | 1 |  |
| 12  | RD-        | Receiver Inverted Data Out. AC Coupled.                          |   |  |
| 13  | RD+        | Receiver Non-Inverted Data Out. AC Coupled.                      |   |  |
| 14  | VeeR       | Receiver Ground (Common with Transmitter Ground).                | 1 |  |
| 15  | VccR       | Receiver Power Supply.                                           |   |  |
| 16  | VccT       | Transmitter Power Supply.                                        |   |  |
| 17  | VeeT       | Transmitter Ground (Common with Receiver Ground).                | 1 |  |
| 18  | TD+        | Transmitter Non-Inverted Data In. AC Coupled.                    |   |  |
| 19  | TD-        | Transmitter Inverted Data In. AC Coupled.                        |   |  |
| 20  | VeeT       | Transmitter Ground (Common with Receiver Ground).                | 1 |  |


### Notes:

- 1. The circuit ground is isolated from the chassis ground.
- 2. Disabled: TDIS>2V or open, enabled: TDIS<0.8V.
- 3. Should be pulled up with  $4.7k\Omega$  to  $10k\Omega$  on the host board to a voltage between 2V and 3.6V.
- 4. LOS is an open collector output.


## **Electrical Pad Layout**



## **Block Diagram of Transceiver**



# **Mechanical Specifications**



All dimensions are ±0.2mm unless otherwise specified.
Unit: mm

#### **About ProLabs**

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

#### **Complete Portfolio of Network Solutions**

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

#### **Trusted Partner**

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.















#### **Contact Information**

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600