

OSFP-2OSFPRHS-PDAC1M-C

MSA and TAA 800GBase-CU OSFP112 to 2xOSFP112-RHS Direct Attach Cable (Passive Twinax, 1m, Infiniband)

Features:

- OSFP Module Compliant to OSFP MSA
- Transmission Data Rate Up to PAM4 106.25Gbps Per Channel
- Enable 800Gbps to 2x400Gbps Transmission
- Built-In EEPROM Functions
- Operating Temperature Range: 0 to 70 Celsius
- RoHS Compliant and Lead-Free

Applications:

• 800GBase Ethernet

Product Description

This is a MSA Compliant 800GBase-CU OSFP to 2xOSFP112-RHS direct attach cable that operates over passive copper with a maximum reach of 1m. It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. We stand behind the quality of our products and proudly offer a limited lifetime warranty. This cable is TAA (Trade Agreements Act) compliant and is built to comply with MSA (Multi-Source Agreement) standards.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

General Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	0		70	°C
Supply Voltage	Vcc	3.13	3.3	3.47	V
Relative Operating Humidity	RH	5		85	%
Data Rate	DR		800		Gbps

Physical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Length	L			1	М		
AWG			28		AWG		
Jacket Material		Plastic Braided Mesh Technology Net, Silver Gray					

Electrical Specifications

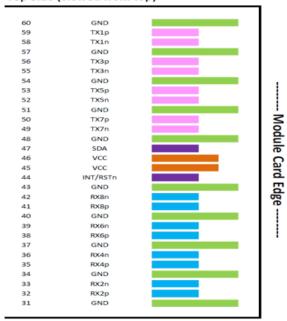
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Resistance	Rcon			3	Ω	
Insulation Resistance	Rins			10	ΜΩ	
Raw Cable Impedance	Zca	95		110	Ω	
Mated Connector Impedance	Zmated	85		115	Ω	
Maximum Insertion Loss @26.56GHz	SDD21	11		18	dB	
Differential to Common- Mode Return Loss	SDD11/ 22	$RLcd(f) \ge $	$ 22 - 10(f/26.56) 0.05 \le 15 - 3(f/26.76) 26.56 $	f < 26.56 5 ≤ f ≤40	dB	1
Differential to Common- Mode Conversion Loss	SCD21- SDD21	Conversion_loss(f))	$05 \le f < 12.89$ 2.89 \le f \le 40	dB	1
Common-Mode to Common-Mode Return Loss	SCC11- 22	RLcc(f) ≥ 1.08			dB	1
Minimum COM	СОМ	3			dB	

Notes:

1. For $0.05 \le f \le 40$ GHz, where f is the frequency in GHz.

Pin Descriptions

Pin	Symbol	Name/Description	Logic	Plug	Direction	Notes
1	GND	Module Ground.		Sequence 1		
2	Tx2+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
3	Tx2-	Transmitter Data Inverted.	CML-I	3	Input from Host	
4	GND	Module Ground.		1		
5	Tx4+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
6	Tx4-	Transmitter Data Inverted.	CML-I	3	Input from Host	
7	GND	Module Ground.		1		
8	Tx6+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
9	Tx6-	Transmitter Data Inverted.	CML-I	3	Input from Host	
10	GND	Module Ground.		1		
11	Tx8+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
12	Tx8-	Transmitter Data Inverted.	CML-I	3	Input from Host	
13	GND	Module Ground.		1		
14	SCL	2-Wire Serial Interface Clock.	LVCMOS-I/O	3	Bi-Directional	1
15	Vcc	+3.3V Power.		2	Power from Host	
16	Vcc	+3.3V Power.		2	Power from Host	
17	LPWn/PRSn	Low-Power Mode/Module Present.	Multi-Level	3	Bi-Directional	2
18	GND	Module Ground.		1		
19	Rx7-	Receiver Data Inverted.	CML-O	3	Output to Host	
20	Rx7+	Receiver Data Non-Inverted.	CML-O	3	Output to Host	
21	GND	Module Ground.		1		
22	Rx5-	Receiver Data Inverted.	CML-O	3	Output to Host	
23	Rx5+	Receiver Data Non-Inverted.	CML-O	3	Output to Host	
24	GND	Module Ground.		1		
25	Rx3-	Receiver Data Inverted.	CML-O	3	Output to Host	
26	Rx3+	Receiver Data Non-Inverted.	CML-O	3	Output to Host	
27	GND	Module Ground.		1		
28	Rx1-	Receiver Data Inverted.	CML-O	3	Output to Host	
29	Rx1+	Receiver Data Non-Inverted.	CML-O	3	Output to Host	
30	GND	Module Ground.		1		
31	GND	Module Ground.		1		
32	Rx2+	Receiver Data Non-Inverted.	CML-O	3	Output to Host	
33	Rx2-	Receiver Data Inverted.	CML-O	3	Output to Host	
34	GND	Module Ground.		1		
35	Rx4+	Receiver Data Non-Inverted.	CML-O	3	Output to Host	

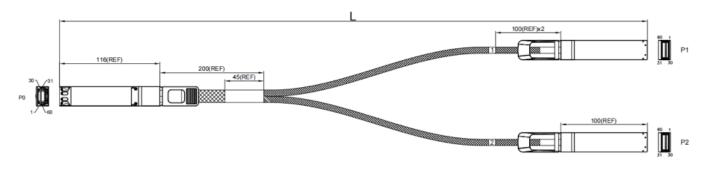

36	Rx4-	Receiver Data Inverted.	CML-O	3	Output to Host	
37	GND	Module Ground.		1		
38	Rx6+	Receiver Data Non-Inverted.	CML-O	3	Output to Host	
39	Rx6-	Receiver Data Inverted.	CML-O	3	Output to Host	
			CIVIL-O		Output to Host	
40	GND	Module Ground.		1		
41	Rx8+	Receiver Data Non-Inverted.	CML-O	3	Output to Host	
42	Rx8-	Receiver Data Inverted.	CML-O	3	Output to Host	
43	GND	Module Ground.		1		
44	INT/RSTn	Module Interrupt/Module Reset.	Multi-Level	3	Bi-Directional	2
45	Vcc	+3.3V Power.		2	Power from Host	
46	Vcc	+3.3V Power.		2	Power from Host	
47	SDA	2-Wire Serial Interface Data.	LVCMOS-I/O	3	Bi-Directional	1
48	GND	Module Ground.		1		
49	Tx7-	Transmitter Data Inverted.	CML-I	3	Input from Host	
50	Tx7+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
51	GND	Module Ground.		1		
52	Tx5-	Transmitter Data Inverted.	CML-I	3	Input from Host	
53	Tx5+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
54	GND	Module Ground.		1		
55	Tx3-	Transmitter Data Inverted.	CML-I	3	Input from Host	
56	Tx3+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
57	GND	Module Ground.		1		
58	Tx1-	Transmitter Data Inverted.	CML-I	3	Input from Host	
59	Tx1+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
60	GND	Module Ground.		1		

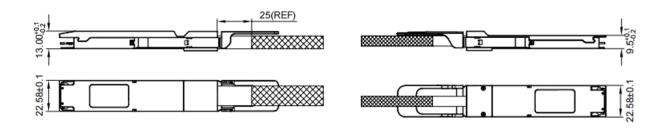
Notes:

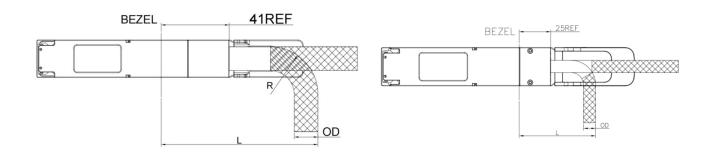
- 1. Open-drain with pull-up resistor on the Host.
- 2. See "Pin Assignment" below for the required circuit.

Pin Assignments

Top Side (viewed from top)


Bottom Side (viewed from bottom) тх2р TX2n GND ТХ4р TX4n GND TX6p TX6n 10 GND TX8p TX8n 11 12 GND 13 14 15 16 17 18 19 20 21 SCL VCC vcc LPWn/PRSn GND RX7n RX7p RX5n RX5p GND 22 23 24 25 26 27 RX3n RX3p GND RX1n 28 RX1p GND 30


Wiring Diagram


WIRING DIAGRAM							
PO END			P	1 END			
58	TX1n	\rightarrow	28	RX1n			
59	TX1p	\rightarrow	29	RX1p			
28	RX1n	←	58	TX1n			
29	RX1p	←	59	TX1p			
2	TX2p	\rightarrow	32	RX2p			
3	TX2n	\rightarrow	33	RX2n			
32	RX2p	←	2	TX2p			
33	RX2n	←	3	TX2n			
55	TX3n	\rightarrow	25	RX3n			
56	ТХЗр	\rightarrow	26	RX3p			
25	RX3n	←	55	TX3n			
26	RX3p	\leftarrow	56	TX3p			
5	TX4p	\rightarrow	35	RX4p			
6	TX4n	\rightarrow	36	RX4n			
35	RX4p	←	5	TX4p			
36	RX4n	←	6	TX4n			
GNI	GROUP		GN[GROUP			
	/10/13/18/		1/4/7/10/13/18/				
21/24/	\vdash	21/24/27/30/31/					
	34/37/40/43/48/			/40/43/48/			
51/5	51/54/57/60			54/57/60			
	SHELL-SHI	ELD	ING-SH	ELL			

	WIDING		LACDAN					
<u></u>	WIRING DIAGRAM							
PO END			P2 END					
52	TX5n	\rightarrow	28	RX1n				
53	TX5p	\rightarrow	29	RX1p				
22	RX5n	\leftarrow	58	TX1n				
23	RX5p	←	59	TX1p				
8	TX6p	\rightarrow	32	RX2p				
9	TX6n	\rightarrow	33	RX2n				
38	RX6p	←	2	TX2p				
39	RX6n	\leftarrow	3	TX2n				
49	TX7n	\rightarrow	25	RX3n				
50	TX7p	\rightarrow	26	RX3p				
19	RX7n	←	55	TX3n				
20	RX7p	←	56	TX3p				
11	TX8p	\rightarrow	35	RX4p				
12	TX8n	\rightarrow	36	RX4n				
41	RX8p	←	5	TX4p				
42	RX8n	←	6	TX4n				
GNI	GROUP		GNI	GROUP				
1/4/7/	/10/13/18/		1/4/7/	/10/13/18/				
21/24/	/27/30/31/	<u> </u>		/27/30/31/				
34/37/40/43/48/			34/37/40/43/48/					
51/5		51/5	54/57/60					
	SHELL-SHI	ELD	ING-SH	ELL				

Mechanical Specifications

Bending Radius

800G OSFP				OSFP RHS			
Wire Gauge	OD	Bend Radius "R"	Min. Bend Radius "L"	Wire Gauge	OD	Bend Radius "R"	Min. Bend Radius
28AWG	10.2mm	21mm	81mm	28AWG	7.0mm	14mm	60mm

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600