

OSFP-800GB-DR8-C

MSA and TAA 800GBase-DR8 PAM4 OSFP Transceiver (SMF, 1310nm, 500m, MPO-16, DOM, CMIS 5.0)

Features:

- Compliant with OSFP MSA Specifications
- Compliant with IEEE 802.3cu-2021: 8x100GBASE-DR Optical Interface
- Compliant with IEEE 802.3ck-2022: 8x100GAUI-1 C2M Electrical Interface
- Compliant with CMIS 5.0
- MPO-16 Connector
- Operating Temperature: 0 to 70 Celsius
- Class 1 Laser
- RoHS Compliant and Lead-Free

Applications:

• 800GBase Ethernet

Product Description

This MSA compliant compatible OSFP transceiver provides 800GBase-DR8 throughput up to 500m over single-mode fiber (SMF) PAM4 using a wavelength of 1310nm via a MPO-16 connector. It can operate at temperatures between 0 and 70C. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Power Supply Voltage	Vcc	-0.5		3.6	V	
Relative Humidity (Non-Condensing)	RH	5		95	%	
Data Input Voltage Differential	V _{DIP} -V _{DIN}			1	V	
Control Input Voltage	Vı	-0.3		Vcc+0.5	V	
Control Output Current	I ₀	-20		20	mA	
Signaling Speed Per Lane	DRL		53.125		GBd	
Operating Distance		2		500	m	
Data Rate	DR		850		Gbps	

Electrical Characteristics

Electrical Characteristics							
Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V		
Instantaneous Peak Current a	t Hot Plug	Icc_ _{IP}			6600	mA	
Sustained Peak Current at Hot	t Plug	ICC_SP			5494.5	mA	
Maximum Power Dissipation		PD			16.5	W	
Maximum Power Dissipation	(Low-Power Mode)	PD _{LP}			2	W	
Control Input Voltage - High		VIH	Vcc*0.7		Vcc+0.3	V	
Control Input Voltage – Low		VIL	-0.3		Vcc*0.3	V	
2-Wire Serial Interface Clock F	Rate				400	kHz	
Power Supply Noise (1kHz to :	1MHz, Pk-Pk)				66	mVp-p	
Transmitter (TP1)							
Differential Pk-Pk Input Voltag	ge Tolerance		750			mV	
Pk-Pk AC Common-Mode Voltage Tolerance	Low-Frequency (VCM _{LF})		32			mV	
Voltage Tolerance	Full-Band (VCM _{FB})		80			mV	
Differential-Mode to Commor	n-Mode Return Loss	RLCd	802.3ck 120G-2			dB	
Effective Return Loss		ERL	8.5			dB	
Differential Termination Misn	natch				10	%	
Single-Ended Voltage Tolerand	ce Range		-0.4		3.3	V	
DC Common-Mode Voltage To		-0.35		2.85	V		
Receiver (TP4)							
Pk-Pk AC Common-Mode	Low-Frequency (VCM _{LF})				32	mV	
Voltage	Full-Band (VCM _{FB})				80	mV	
Differential Pk-Pk Output	Short-Mode				600	mV	

Voltage	Long-Mode				845	mV	
Eye Height	EH	15			mV		
Vertical Eye Closure	VEC			12	dB		
Common-Mode to Differentia	RLDc	802.3ck 120G-1			dB		
Effective Return Loss	ERL	8.5			dB		
Differential Termination Mismatch					10	%	
Transition Time			8.5			ps	
DC Common-Mode Voltage Tolerance			-0.35		2.85	V	

Electrical Low-Speed Control and Sense Signal Specifications

Parameter	Symbol	Min.	Max.	Unit	Notes
Module Output SCL and SDA	VOL	0	0.4	V	
Module Input SCL and SDA	VIL	-0.3	Vcc*0.3	V	
	VIH	Vcc*0.7	Vcc+0.5	V	
INT/RSTn					

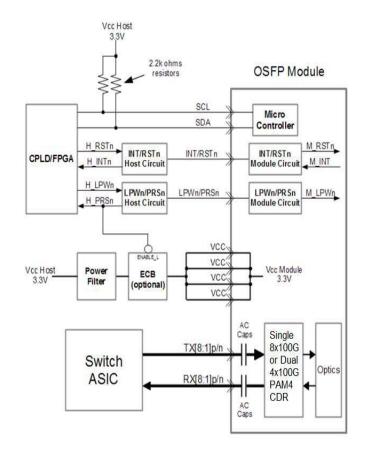
Optical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter							
Wavelength		λC	1304.5	1311	1317.5	nm	
Side-Mode Suppression Ratio		SMSR	30			dB	
Average Launch Power Per La	ane	AOPL	-2.9		4.0	dBm	1
Outer Optical Modulation Am (OMAouter) Per Lane	nplitude	TOMA	-0.8		4.2	dBm	
Launch Power in OMAouter	For ER ≥ 5dB	TOMA - TDECQ	-2.2			dBm	
Minus TDECQ Per Lane	For ER < 5dB	TOMA - TDECQ	-1.9			dBm	
Transmitter and Dispersion Ey PAM4 (TDECQ) Per Lane	e Closure for	TDECQ			3.4	dB	
TDECQ – 10log10(Ceq) Per Lar	ne	Ceq			3.4	dB	
Average Launch Power of Off Lane	Average Launch Power of Off Transmitter Per Lane				-15	dBm	
Extinction Ratio	Extinction Ratio		3.5			dB	
Transmitter Transition Time	Transmitter Transition Time				17	ps	
RIN _{15.5} OMA		RIN			-136	dB/Hz	
Optical Return Loss Tolerance		ORLT			15.5	dB	
Transmitter Reflectance		TR			-26	dB	2
Receiver (TP4)							
Wavelength		λC	1304.5	1311	1317.5	nm	
Damage Threshold Per Lane		AOP _D	5			dBm	
Average Receive Power Per La	ine	AOP _R	-5.9		4	dBm	
Receive Power (OMAouter) Po	er Lane	OMA _R			4.2	dBm	
Receiver Reflectance		RR			-26	dB	
Receiver Sensitivity (OMAouter) Per Lane		SOMA			Max. (–3.9, SECQ – 5.3)	dBm	3
Lane	Stressed Receiver Sensitivity (OMAouter) Per Lane				-1.9	dBm	4
Conditions of Stressed Receiv	ver Sensitivity Test						
Stressed Eye Closure for PAM4 (SECQ) Per Lane Under Test		SECQ		3.4		dB	
SECQ – 10log10 (Ceq) Per Land	e Under Test	Ceq			3.4	dB	

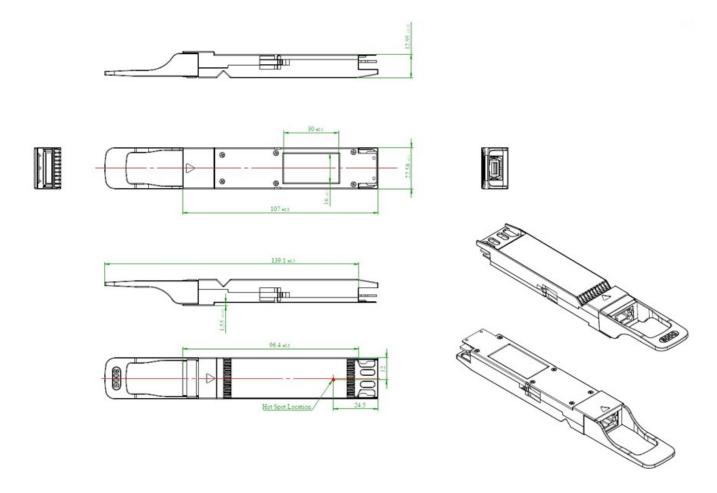
Notes:

- 1. Average launch power, per lane (minimum), is informative and not the principal indicator of signal strength.
- 2. Transmitter reflectance is defined looking into the transmitter.
- 3. Receiver sensitivity (OMAouter), per lane (maximum), is informative and is defined for a transmitter with a value of SECQ up to 3.4dB.
- 4. Measured with conformance test signal at TP3 for the BER = 2.4×10^{-4} .

Pin Descriptions


Pin Descri				
Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	
2	CML-I	Tx2+	Transmitter Non-Inverted Data.	
3	CML-I	Tx2-	Transmitter Inverted Data.	
4		GND	Module Ground.	
5	CML-I	Tx4+	Transmitter Non-Inverted Data.	
6	CML-I	Tx4-	Transmitter Inverted Data.	
7		GND	Module Ground.	
8	CML-I	Tx6+	Transmitter Non-Inverted Data.	
9	CML-I	Tx6-	Transmitter Inverted Data.	
10		GND	Module Ground.	
11	CML-I	Tx8+	Transmitter Non-Inverted Data.	
12	CML-I	Tx8-	Transmitter Inverted Data.	
13		GND	Module Ground.	
14	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	
15		Vcc	+3.3V Power Supply.	
16		Vcc	+3.3V Power Supply.	
17	Multi-Level	LPWn/PRSn	Low-Power Mode/Module Present.	
18		GND	Module Ground.	
19	CML-O	Rx7-	Receiver Inverted Data.	
20	CML-O	Rx7+	Receiver Non-Inverted Data.	
21		GND	Module Ground.	
22	CML-O	Rx5-	Receiver Inverted Data.	
23	CML-O	Rx5+	Receiver Non-Inverted Data.	
24		GND	Module Ground.	
25	CML-O	Rx3-	Receiver Inverted Data.	
26	CML-O	Rx3+	Receiver Non-Inverted Data.	
27		GND	Module Ground.	
28	CML-O	Rx1-	Receiver Inverted Data.	
29	CML-O	Rx1+	Receiver Non-Inverted Data.	
30		GND	Module Ground.	
31		GND	Module Ground.	
32	CML-O	Rx2+	Receiver Non-Inverted Data.	
33	CML-O	Rx2-	Receiver Inverted Data.	
34		GND	Module Ground.	
35	CML-O	Rx4+	Receiver Non-Inverted Data.	
36	CML-O	Rx4-	Receiver Inverted Data.	
	1	1	<u> </u>	ı

37		GND	Module Ground.	
38	CML-O	Rx6+	Receiver Non-Inverted Data.	
39	CML-O	Rx6-	Receiver Inverted Data.	
40		GND	Module Ground.	
41	CML-O	Rx8+	Receiver Non-Inverted Data.	
42	CML-O	Rx8-	Receiver Inverted Data.	
43		GND	Module Ground.	
44	Multi-Level	INT/RSTn	Module Input/Module Reset.	
45		Vcc	+3.3V Power Supply.	
46		Vcc	+3.3V Power Supply.	
47	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	
48		GND	Module Ground.	
49	CML-I	Tx7-	Transmitter Inverted Data.	
50	CML-I	Tx7+	Transmitter Non-Inverted Data.	
51		GND	Module Ground.	
52	CML-I	Tx5-	Transmitter Inverted Data.	
53	CML-I	Tx5+	Transmitter Non-Inverted Data.	
54		GND	Module Ground.	
55	CML-I	Tx3-	Transmitter Inverted Data.	
56	CML-I	Tx3+	Transmitter Non-Inverted Data.	
57		GND	Module Ground.	
58	CML-I	Tx1-	Transmitter Inverted Data.	
59	CML-I	Tx1+	Transmitter Non-Inverted Data.	
60		GND	Module Ground.	


Electrical Pad Layout

Recommended OSFP Host Board Schematic

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600