

PAN-QSFP28-AOC-2M-C

Palo Alto Networks® PAN-QSFP28-AOC-2M Compatible TAA Compliant 100GBase-AOC QSFP28 Active Optical Cable (850nm, MMF, 2m)

Features:

- QSFP28 MSA compliant
- Four independent full-duplex channels
- Supports 103.1Gbps aggregate bit rate
- Operating case temperature: 0 to 70 Celsius
- 4x25G electrical interface (OIF CEI-28G-VSR)
- Single 3.3V power supply
- Maximum power consumption 2.5W each terminal
- RoHS Compliant and Lead Free

Applications:

- 100GBase Ethernet
- InfiniBand EDR

Product Description

This is a Palo Alto Networks® PAN-QSFP28-AOC-2M Compatible 100GBase-AOC QSFP28 to QSFP28 active optical cable that operates over active fiber with a maximum reach of 2m. It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. We stand behind the quality of our products and proudly offer a limited lifetime warranty. This cable is TAA (Trade Agreements Act) compliant and is built to comply with MSA (Multi-Source Agreement) standards.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

General Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	0		70	
Power Supply Voltage	Vcc	-0.5		3.6	V
Relative Humidity (Non-Condensing)	RH	0		85	%

Electrical Characteristics

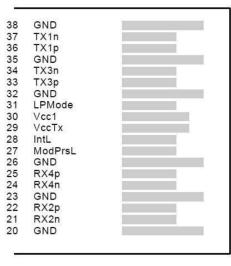
Parameter	Test Point	Min.	Тур.	Max.	Unit	Notes			
Power Consumption				2.5	W	1			
Supply Current	Icc			757	mA	1			
Power Supply Voltage	Vcc	3.135	3.3	3.465	V				
Data Rate Per Lane			25.78125		Gbps				
Data Rate Accuracy		-100		100	ppm				
Control Input Voltage - High		2		Vcc	V				
Control Input Voltage - Low		0		0.8	V				
Transmitter (Per Lane)	Transmitter (Per Lane)								
Overload Differential Voltage	TP1a	900			mV				
Common-Mode Voltage (Vcm)	TP1	-350		2825	mV	2			
Differential Termination Resistance Mismatch	TP1			10	%	At 1MHz			
Differential Return Loss (SDD11)	TP1			See CEI- 28G0VSR Equation 13-19	dB				
Common-Mode to Differential Conversion and Differential to Common-Mode Conversion	TP1			See CEI- 28G-VSR Equation 13-20	dB				
Stressed Input Test	TP1a	See CEI-28G- VSR Section 13.3.11.2.1							
Receiver (Per Lane)									
Differential Voltage (Pk-Pk)	TP4			900	mV				
Common-Mode Voltage (Vcm)	TP4	-350		2850	mV	2			
Common-Mode Noise (RMS)	TP4			17.5	mV				
Differential Termination Resistance Mismatch	TP4			10	%	At 1MHz			

Differential Return Loss (SDD22)	TP4		See CEI- 28G-VSR Equation 13-19	dB	
Common-Mode to Differential Conversion and Differential to Common-Mode Conversion (SCC22)	TP4		-2	dB	3
Transition Time (20-80%)	TP4	9.5		ps	
Vertical Eye Closure (VEC)	TP4		5.5	dB	
Eye Width at 10 ⁻¹⁵ Probability (EW15)	TP4	0.57		UI	
Eye Height at 10 ⁻¹⁵ Probability (EH15)	TP4	0.57		UI	

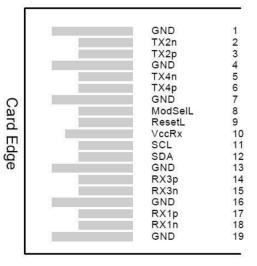
Notes:

- 1. Per terminal.
- 2. Vcm is generated by the host. Specification includes the effects of ground offset voltage.
- 3. From 250MHz to 30GHz.

Pin Descriptions

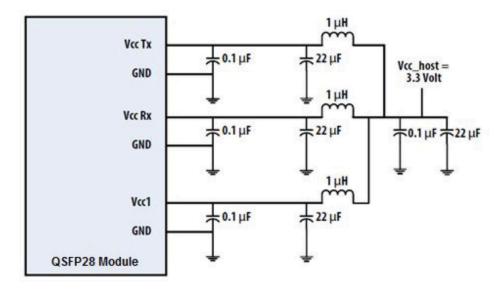

Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	1
2	CML-I	Tx2-	Transmitter Inverted Data Input.	
3	CML-I	Tx2+	Transmitter Non-Inverted Data Input.	
4		GND	Module Ground.	1
5	CML-I	Tx4-	Transmitter Inverted Data Input.	
6	CML-I	Tx4+	Transmitter Non-Inverted Data Input.	
7		GND	Module Ground.	1
8	LVTTL-I	ModSelL	Module Select.	2
9	LVTTL-I	ResetL	Module Reset.	2
10		VccRx	+3.3V Receiver Power Supply.	
11	LVCMOS-I	SCL	2-Wire Serial Interface Clock.	2
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	2
13		GND	Module Ground.	1
14	CML-O	Rx3+	Receiver Non-Inverted Data Output.	
15	CML-O	Rx3-	Receiver Inverted Data Output.	
16		GND	Module Ground.	1
17	CML-O	Rx1+	Receiver Non-Inverted Data Output.	
18	CML-O	Rx1-	Receiver Inverted Data Output.	
19		GND	Module Ground.	1
20		GND	Module Ground.	1

21	CML-O	Rx2-	Receiver Inverted Data Output.	
22	CML-O	Rx2+	Receiver Non-Inverted Data Output.	
23		GND	Module Ground.	1
24	CML-O	Rx4-	Receiver Inverted Data Output.	
25	CML-O	Rx4+	Receiver Non-Inverted Data Output.	
26		GND	Module Ground.	1
27	LVTTL-O	ModPrsL	Module Present. Internally pulled down to the GND.	
28	LVTTL-O	IntL	Interrupt output should be pulled up on the host board.	2
29		VccTx	+3.3V Transmitter Power Supply.	
30		Vcc1	+3.3V Power Supply.	
31	LVTTL-I	LPMode	Low-Power Mode.	2
32		GND	Module Ground.	1
33	CML-I	Tx3+	Transmitter Non-Inverted Data Input.	
34	CML-I	Tx3-	Transmitter Inverted Data Input.	
35		GND	Module Ground.	1
36	CML-I	Tx1+	Transmitter Non-Inverted Data Input.	
37	CML-I	Tx1-	Transmitter Inverted Data Input.	
38		GND	Module Ground.	1

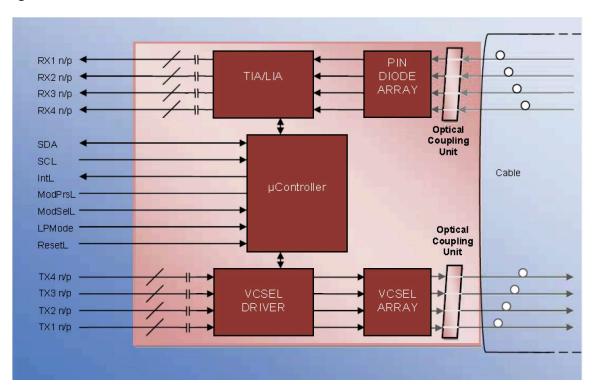

Notes:

- 1. The module circuit ground is isolated from the module chassis ground within the module.
- 2. Open collector. Should be pulled up with $4.7k\Omega$ to $10k\Omega$ on the host board to a voltage between 3.15V and 3.6V.

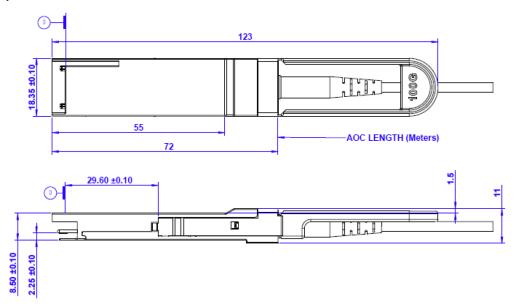
Electrical Pin-Out Details



Top Side Viewed from Top



Bottom Side Viewed from Bottom


Recommended Power Supply Filter

Block Diagram

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600