Pro**Labs**

QDD-200GB-PSM8-C

MSA and TAA 200GBase-PSM8 QSFP-DD Transceiver (SMF, 1310nm, 2km, MPO-24, DOM)

Features:

- 8 Channels 1310nm DFB
- Supports 8x25Gbps and 8x10Gbps Aggregate Bit Rates
- 8 Channels Full-Duplex Transceiver Modules
- 8 Channels PIN Photo Detector Array
- Internal CDR Circuits on Both Receiver and Transmitter Channels
- Supports CDR Bypass
- 3.3V Power Supply Voltage
- Up to 2km Reach for G.652 SMF
- Hot Pluggable QSFP-DD Form Factor
- Operating Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free

Applications:

• 200G Ethernet

Product Description

This MSA Compliant QSFP-DD transceiver provides 200GBase-PSM8 throughput up to 2km over single-mode fiber (SMF) using a wavelength of 1310nm via an MPO-24 connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 053024

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	-0.3		3.6	V	
Input Voltage	VIN	-0.3		Vcc+0.3	V	
Storage Temperature	Tstg	-20		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Relative Humidity (Non-Condensing)	RH	5		95	%	
Data Rate	DR	10.3125	25.78125		Gbps	
Fiber Bend Radius	FBR	0.002		2	km	

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.13	3.3	3.47	V	
Power Dissipation	P _{DISS}		5.28	6	W	
Differential Input Impedance	ZIN	90	100	110	Ω	
Differential Output Impedance	ZOUT	90	100	110	Ω	
Differential Input Voltage Amplitude	ΔVIN	190		700	mVp-p	1
Differential Output Voltage Amplitude	Δνουτ	300		850	mVp-p	2
Input Logic Level - High	VIH	2.0		Vcc	V	
Input Logic Level - Low	VIL	0		0.8	V	
Output Logic Level - High	VOH	Vcc-0.5		Vcc	V	
Output Logic Level - Low	VOL	0		0.4	V	

Notes:

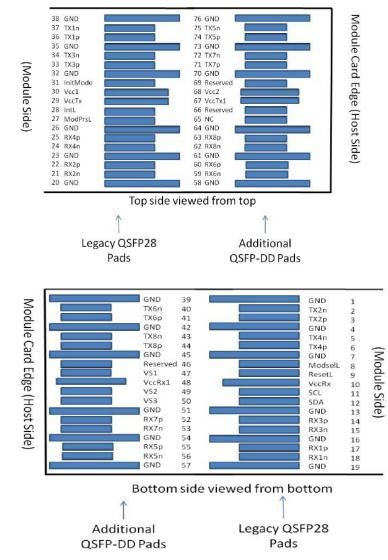
- 1. Differential input voltage amplitude is measured between Tx#+ and Tx#-.
- 2. Differential output voltage amplitude is measured between Rx#+ and Rx#-.

Optical Characteristics						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Center Wavelength	λC	1295	1310	1325	nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Average Launch Power Per Lane	Pavg	-6		2	dBm	
Optical Modulation Amplitude Per Lane	POMA	-5.0		2.2	dBm	
TDP Per Lane	TDP			2.9	dB	
Extinction Ratio	ER	3.5			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	
Optical Return Loss Tolerance	TOL			20	dB	
Transmitter Reflectance	RT			-12	dB	
Average Launch Power of Off Transmitter Per Lane	Poff			-30	dB	
Eye Mask Coordinates: (X1, X2, X3, Y1, Y2, Y3)	(0.31, 0.4, 0.45, 0.34, 0.38, 0.4) Hit Ratio = 5x10 ⁻⁵					
Receiver						
Center Wavelength	λC	1295	1310	1325	nm	
Damage Threshold Per Lane	THd	3.0			dBm	
Average Receive Power Per Lane		-12.66		2.0	dBm	
Maximum Receive Power Per Lane (OMA)				2.2	dBm	
Receiver Reflectance	RR			-26	dBm	
Receiver Sensitivity (OMA) Per Lane	SEN			-11.35	dBm	
LOS Assert	LOSA		-18		dBm	
LOS De-Assert – OMA	LOSD		-15		dBm	
LOS Hysteresis	LOSH	0.5		3	dB	

Notes:

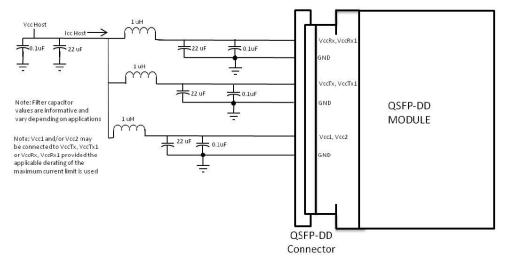
- 1. Even if the TDP<1dB, the OMA minimum must exceed the minimum value specified here.
- 2. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 3. Sensitivity is specified at $5x10^{-5}$ BER @25.78125Gbps.

Pin Descriptions

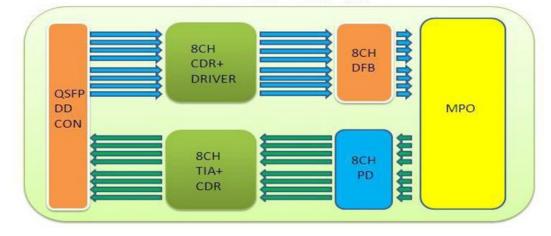

Pin	Symbol	Logic	Name/Description	Plug Sequence	Notes
1	GND		Module Ground.	1B	1
2	Tx2-	CML-I	Transmitter Inverted Data Input.	3B	
3	Tx2+	CML-I	Transmitter Non-Inverted Data Input.	3B	
4	GND		Module Ground.	1B	1
5	Tx4-	CML-I	Transmitter Inverted Data Input.	3B	
6	Tx4+	CML-I	Transmitter Non-Inverted Data Input.	3B	
7	GND		Module Ground.	1B	1
8	ModSelL	LVTTL-I	Module Select.	3B	
9	ResetL	LVTTL-I	Module Reset.	3B	
10	VccRx		+3.3V Receiver Power Supply.	2B	2
11	SCL	LVCMOS-I/O	2-Wire Serial Interface Clock.	3B	
12	SDA	LVCMOS-I/O	2-Wire Serial Interface Data.	3B	
13	GND		Module Ground.	1B	1
14	Rx3+	CML-O	Receiver Non-Inverted Data Input.	3B	
15	Rx3-	CML-O	Receiver Inverted Data Input.	3B	
16	GND		Module Ground.	1B	1
17	Rx1+	CML-O	Receiver Non-Inverted Data Input.	ЗВ	
18	Rx1-	CML-O	Receiver Inverted Data Input.	3B	
19	GND		Module Ground.	1B	1
20	GND		Module Ground.	1B	1
21	Rx2-	CML-O	Receiver Inverted Data Input.	3B	
22	Rx2+	CML-O	Receiver Non-Inverted Data Input.	3B	
23	GND		Module Ground.	1B	1
24	Rx4-	CML-O	Receiver Inverted Data Input.	3B	
25	Rx4+	CML-O	Receiver Non-Inverted Data Input.	3B	
26	GND		Module Ground.	1B	2
27	ModPrsL	LVTTL-O	Module Present.	3B	2
28	IntL	LVTTL-O	Interrupt.	3B	
29	VccTx		+3.3V Transmitter Power Supply.	2B	1
30	Vcc1		+3.3V Power Supply.	2B	
31	InitMode	LVTTL-I	Initialization Mode. In legacy QSFP applications, the InitMode pad is called LPMODE.	3B	
32	GND		Module Ground.	1B	1
33	Tx3+	CML-I	Transmitter Non-Inverted Data Input.	3B	
34	Tx3-	CML-I	Transmitter Inverted Data Input.	3B	
35	GND		Module Ground.	1B	1
36	Tx1+	CML-I	Transmitter Non-Inverted Data Input.	3B	

37	Tx1-	CML-I	Transmitter Inverted Data Input.	3B	
38	GND		Module Ground.	1B	1
39	GND		Module Ground.	1A	1
40	Tx6-	CML-I	Transmitter Inverted Data Input.	3A	
41	Tx6+	CML-I	Transmitter Non-Inverted Data Input.	3A	
42	GND		Module Ground.	1A	1
43	Tx8-	CML-I	Transmitter Inverted Data Input.	3A	
44	Tx8+	CML-I	Transmitter Non-Inverted Data Input.	3A	
45	GND		Module Ground.	1A	1
46	Reserved		For Future Use.	3A	3
47	VS1		Module Vendor-Specific 1.	3A	3
48	VccRx1		+3.3V Receiver Power Supply.	2A	2
49	VS2		Module Vendor-Specific 2.	3A	3
50	VS3		Module Vendor-Specific 3.	3A	3
51	GND		Module Ground.	1A	1
52	Rx7+	CML-O	Receiver Non-Inverted Data Input.	3A	
53	Rx7-	CML-O	Receiver Inverted Data Input.	3A	
54	GND		Module Ground.	1A	1
55	Rx5+	CML-O	Receiver Non-Inverted Data Input.	3A	
56	Rx5-	CML-O	Receiver Inverted Data Input.	3A	
57	GND		Module Ground.	1A	1
58	GND		Module Ground.	1A	1
59	Rx6-	CML-O	Receiver Inverted Data Input.	3A	
60	Rx6+	CML-O	Receiver Non-Inverted Data Input.	3A	
61	GND		Module Ground.	1A	1
62	Rx8-	CML-O	Receiver Inverted Data Input.	3A	
63	Rx8+	CML-O	Receiver Non-Inverted Data Input.	3A	
64	GND		Module Ground.	1A	1
65	NC		Not Connected.	3A	3
66	Reserved		For Future Use.	3A	3
67	VccTx1		+3.3V Transmitter Power Supply.	2A	2
68	Vcc2		+3.3V Power Supply.	2A	2
69	Reserved		For Future Use.	3A	3
70	GND		Module Ground.	1A	1
71	Tx7+	CML-I	Transmitter Non-Inverted Data Input.	3A	
72	Tx7-	CML-I	Transmitter Inverted Data Input.	3A	
73	GND		Module Ground.	1A	1
74	Tx5+	CML-I	Transmitter Non-Inverted Data Input.	3A	

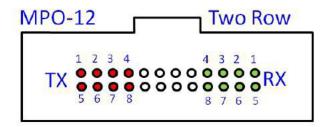
75	Tx5-	CML-I	Transmitter Inverted Data Input.	3A	
76	GND		Module Ground.	1A	1


Notes:

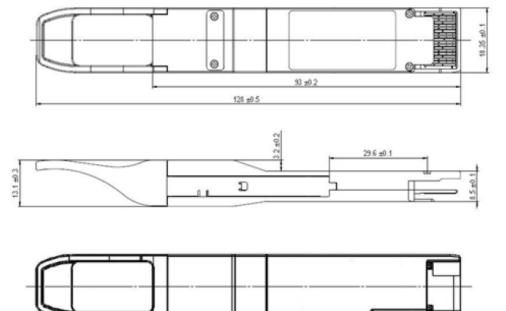
- 1. QSFP-DD uses common ground (GND) for all signals and supply power. All are common within the QSFP-DD module, and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- VccRx, VccRx1, Vcc1, Vcc2, VccTx, and VccTx1 shall be applied concurrently. VccRx, VccRx1, Vcc1, Vcc2, VccTx, and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 100mA.
- 3. All Vendor-Specific, Reserved, and Not Connected pins may be terminated with 50Ω to ground on the host. Pad 65 (Not Connected) shall be left unconnected within the module. Vendor-Specific and Reserved pads shall have an impedance to GND that is greater than 10kΩ and less than 100pF.
- Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, and 3B. Contact Sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, and by 3A, 3B.


Electrical Pin-Out Details

Recommended Supply Filter



Block Diagram


200G QSFP DD PSM8

Optical Interface Lanes and Assignments

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information ProLabs US Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600