Pro**Labs**

QDD-400GB-DCO-ZRP-1DBM-AR-C

Arista Networks[®] Compatible TAA 400GBase-Open ZR+ Coherent QSFP-DD Transceiver (SMF, 1528.77nm to 1567.13nm, 120km, LC, DOM, 1dBm)

Features:

- Hot Pluggable QSFP-DD Footprint (Type 2A)
- Supports 400/300/200/100Gbps
- Duplex LC Connector
- Tunable C-Band Transmitter
- Coherent Receivers
- Power Dissipation is ≤26.1W
- Single +3.3V Power Supply
- Operating Case Temperature: 15 to 75 Celsius
- Tunable Output Power: -9dBm to +1dBm
- Supports both CFEC and oFEC
- RoHS Compliant and Lead Free

Applications:

- 400GBase Ethernet
- Open ZR+
- IP-over-DWDM

Product Description

This Arista Networks[®] QSFP-DD transceiver provides 400GBase-Open ZR+ throughput up to 120km over single-mode fiber (SMF) using a wavelength of 1528.77nm to 1567.13nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Arista Networks[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 092123

Application	Application Codes								
Application Code		Payload Rate	Media Format	FEC	Modulation	Description	Media Lane Interface	Default: Enhanced Mode (S= Standard, E=Enhanced)	
1	1 x 400GAUI-8	400G	ZR	CFEC	16QAM	OIF 400ZR app codes 0x01, 0x03	400G-400ZR- CFEC-16QAM-1-S	S	
2	1 x 400GAUI-8	400G	ZR	CFEC	16QAM	OIF 400ZR app code 0x02	400G-400ER- CFEC-16QAM-1-S	S	
3	1 x 400GAUI-8	400G	OpenZR+	oFEC	16QAM	OpenZR+ MSA	400G-400ZR- oFEC-16QAM-1-S	S	
4	2 x 200GAUI-4	400G	OpenZR+	oFEC	16QAM	OpenZR+ MSA	200G-400ZR- oFEC-16QAM-1-S	S	
5	4 x 100GAUI-2	400G	OpenZR+	oFEC	16QAM	OpenZR+ MSA	100G-400ZR- oFEC-16QAM-1-S	S	
6	1 x 400GAUI-8	400G	OpenZR+	oFEC	16QAM	OpenZR+ MSA	400G-400ZR- oFEC-16QAM-1-E	E	
7	2 x 200GAUI-4	400G	OpenZR+	oFEC	16QAM	OpenZR+ MSA	200G-400ZR- oFEC-16QAM-1-E	E	
8	4 x 100GAUI-2	400G	OpenZR+	oFEC	16QAM	OpenZR+ MSA	400G-400ZR- oFEC-16QAM-1-E	E	
9	3 x 100GAUI-2	300G	OpenZR+	oFEC	8QAM	OpenZR+ MSA	100G-300ZR- oFEC-8QAM-1-SE	S	
10	1 x 200GAUI-2	200G	OpenZR+	oFEC	QPSK	OpenZR+ MSA	200G-200ZR- oFEC-QPSK-1-S	S	
11	2 x 100GAUI-2	200G	OpenZR+	oFEC	QPSK	OpenZR+ MSA	100G-200ZR- oFEC-QPSK-1-S	S	
12	1 x 100GAUI-2	100G	OpenZR+	oFEC	QPSK	OpenZR+ MSA	100G-100ZR- oFEC-QPSK-1-S	S	

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	1
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	15		75	°C	
Relative Humidity (Non-Condensing)	RH			85	%	
Optical Receiver Overload				1	dBm	2

- 1. $3.3V \pm 5\%$ measured at the electrical connector.
- 2. The optical input to the receiver should not exceed this value. Transmitters must never be directly connected to receivers before ensuring that proper optical attenuation is used.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	1
Power Supply Current	lcc			8	А	2
Peak Sustained Current	lcc,sp			8.7	А	3
Inrush Current	lcc,ip			10.5	А	4
Power Dissipation	P _{DISS}			26.1	W	5
Power Consumption				2.75	W	6

- 1. $3.3V \pm 5\%$ measured at the electrical connector.
- 2. Steady state current.
- 3. Sustained peak current at high power enable.
- 4. Instantaneous peak current at high power enable.
- 5. At nominal power supply voltage.
- 6. Low-power mode.

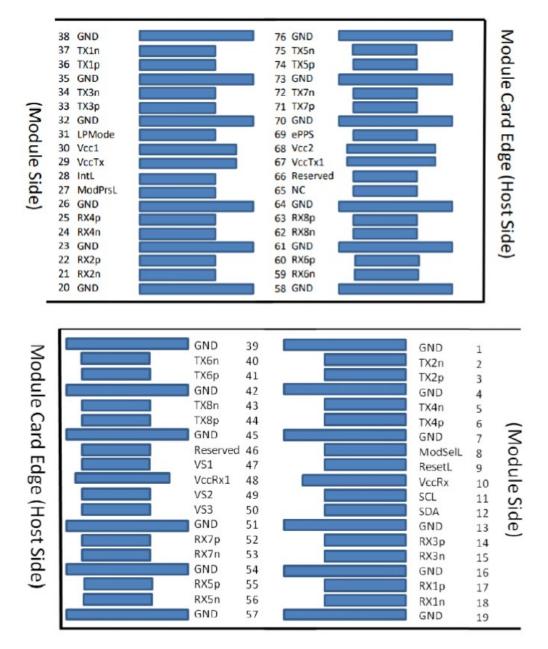
Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes		
Transmitter	Transmitter							
Average Output Power	Ро	-9		+1	dBm	1, 2, 3		
Laser Linewidth				300	kHz	4		
Output Power Stability		-0.5		+0.5	dB	5		
Output Power Stability		-1		+1	dB	6		
In-Band OSNR		38			dB/0.1nm	7		
Out-of-Band OSNR – Narrowband		42			dB/0.1nm	8		
Out-of-Band OSNR – Wideband		42			dB/0.1nm	9		
Frequency Range		191.275		196.125	THz	10		
Center Frequency		ν _T -1.5	VT	v _T +1.5	GHz	11		
Channel Spacing		6.25			GHz	12		
Centre Wavelength Range	Τλ	1528.58		1567.34	nm			
Centre Wavelength	Τλ	λΤ -15	λΤ	λΤ +15	pm			
Receiver								
Maximum Rx Power				13	dBm			
Receiver Operating Wavelength	Rλ	1528.58		1567.34	nm			
Receiver Sensitivity	S	-12		-21	dBm	13		
	S	-15		-23	dBm	14		
	S	-18		-29	dBm	15		
	S	-20		-32	dBm	16		
Receiver Overload	P _{OL}			1	dBm	17		
Receiver Input Power Range		-12		1	dBm	18, 19		
		-15		1	dBm	18, 20		
		-18		1	dBm	18, 21		
		-20		1	dBm	18, 22		
Extended Receiver Input Power Range		-16		1	dBm	23		
Acquisition Range		-3.6		3.6	GHz	24		
Upstream Tx Linewidth		-300		300	kHz			
Transmitter VOA Dynamic Range		10			dB	25		
OSNR Tolerance				22.5	dB	19		
				19.5	dB	20		
				14.8	dB	21		
				11.5	dB	22		
Crosstalk Tolerance				7	dB	26		

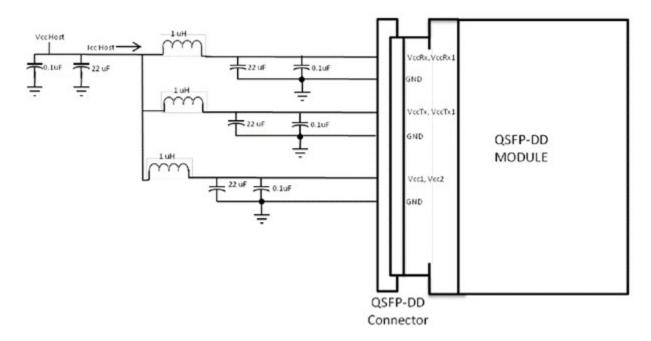
Chromatic Dispersion Tolerance	-52,000	±13,000	+52,000	ps/nm	19, 27
-	-100,000	±50,000	+100,000	ps/nm	20, 27
-	-100,000	±50,000	+100,000	ps/nm	21, 27
	-160,000	±80,000	+160,000	ps/nm	22, 27

- 1. Output power is coupled into a $9/125\mu$ m single-mode fibre.
- 2. The output power is settable in steps of 0.1dB within the specified wavelength range.
- 3. +1dBm tunable down to -9dBm.
- 4. Frequency stability relative to flex grid channel setting.
- 5. Provisioned power greater than the maximum available Tx power. Output power change over temperature and over time, measured over 10ms intervals.
- 6. Provisioned power less than the maximum available Tx power. Output power change over temperature and over time, measured over 10ms intervals.
- 7. The 0.1nm bandwidth for the IB OSNR refers to 12.5GHz optical bandwidth. Measured using the linear interpolation method with ±100GHz offset noise marker. For ZR application codes 0x01-0x03, IB OSNR is defined within the bandwidth of the Tx spectral excursion.
- 8. Measured in frequency range 191.275THz fs 75GHz and fs + 75GHz ... 196.125THz. Noise power is measured in 12.5GHz RBW and referenced to 12.5GHz noise bandwidth.
- 9. Measured in frequency range 191.275THz fs 150GHz and fs + 150GHz ... 196.125THz. Noise power is measured in 62.5GHz RBW and referenced to 12.5GHz noise bandwidth.
- 10. Per ITU-T G.694.1 DWDM grid definition.
- 11. Applies also to LO.
- 12. Supports 100, 75, 50, 12.5, and 6.25GHz frequency grids.
- 13. Minimum input power needed to achieve post-FEC BER≤10⁻¹⁵, ZR400-OFEC-16QAM, OSNR>36dB.
- 14. Minimum input power needed to achieve post-FEC BER≤10⁻¹⁵, ZR300-OFEC-8QAM, OSNR>36dB.
- 15. Minimum input power needed to achieve post-FEC BER≤10⁻¹⁵, ZR200-OFEC-QPSK, OSNR>36dB.
- 16. Minimum input power needed to achieve post-FEC BER≤10⁻¹⁵, ZR100-OFEC-QPSK, OSNR>36dB.
- 17. The optical input to the receiver should not exceed this value. Transmitters must never be directly connected to receivers before ensuring that proper optical attenuation is used. Aggregate power of all channels.
- 18. An input power in this range guarantees optimum OSNR performance.
- 19. ZR400-OFEC-16QAM.
- 20. ZR300-OFEC-8QAM.
- 21. ZR200-OFEC-QPSK.
- 22. ZR100-OFEC-QPSK.
- 23. With ≤1dB OSNR tolerance degradation.
- 24. Frequency offset between received carrier and LO.
- 25. With Tx VOA attenuation set to minimum.
- 26. Ratio of accumulated crosstalk channels to signal power.
- 27. Less than 0.5dB receiver sensitivity penalty compared to OSNR>36dB.

Pin Descriptions

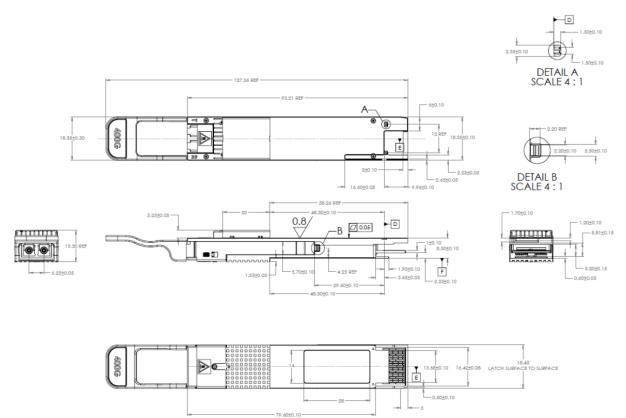

Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground (Logic and Power Return Path).	1
2	CML-I	Tx2-	Transmit Differential Pairs from Host to Module.	
3	CML-I	Tx2+	Transmit Differential Pairs from Host to Module.	
4		GND	Module Ground (Logic and Power Return Path).	1
5	CML-I	Tx4-	Transmit Differential Pairs from Host to Module.	
6	CML-I	Tx4+	Transmit Differential Pairs from Host to Module.	
7		GND	Module Ground (Logic and Power Return Path).	1
8	LVTTL-I	ModSelL	Module Select.	
9	LVTTL-I	ResetL	Module Reset.	
10		VccRx	+3.3V Receiver Power Supply.	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	3
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.	3
13		GND	Module Ground (Logic and Power Return Path).	1
14	CML-0	Rx3+	Receive Differential Pairs from Module to Host.	
15	CML-O	Rx3-	Receive Differential Pairs from Module to Host.	
16		GND	Module Ground (Logic and Power Return Path).	1
17	CML-0	Rx1+	Receive Differential Pairs from Module to Host.	
18	CML-O	Rx1-	Receive Differential Pairs from Module to Host.	
19		GND	Module Ground (Logic and Power Return Path).	1
20		GND	Module Ground (Logic and Power Return Path).	1
21	CML-O	Rx2-	Receive Differential Pairs from Module to Host.	
22	CML-O	Rx2+	Receive Differential Pairs from Module to Host.	
23		GND	Module Ground (Logic and Power Return Path).	1
24	CML-O	Rx4-	Receive Differential Pairs from Module to Host.	
25	CML-O	Rx4+	Receive Differential Pairs from Module to Host.	
26		GND	Module Ground (Logic and Power Return Path).	1
27	LVTTL-O	ModPrsL	Module Present.	4
28		IntL	Interrupt.	5
29		VccTx	+3.3V Transmitter Power Supply.	2
30		Vcc1	+3.3V Power Supply.	2
31	LVTTL-I	LPMode	Low-Power Mode.	
32		GND	Module Ground (Logic and Power Return Path).	1
33	CML-I	Tx3+	Transmit Differential Pairs from Host to Module.	
34	CML-I	Тх3-	Transmit Differential Pairs from Host to Module.	

35		GND	Module Ground (Logic and Power Return Path).	1
36	CML-I	Tx1+	Transmit Differential Pairs from Host to Module.	
37	CML-I	Tx1-	Transmit Differential Pairs from Host to Module.	
38		GND	Module Ground (Logic and Power Return Path).	1
39		GND	Module Ground (Logic and Power Return Path).	1
40	CML-I	Tx6-	Transmit Differential Pairs from Host to Module.	-
_	-	-	Transmit Differential Pairs from Host to Module.	
41	CML-I	Tx6+		
42		GND	Module Ground (Logic and Power Return Path).	1
43	CML-I	Tx8-	Transmit Differential Pairs from Host to Module.	
44	CML-I	Tx8+	Transmit Differential Pairs from Host to Module.	
45		GND	Module Ground (Logic and Power Return Path).	1
46		Reserved	For Future Use. Not Connected.	6
47	LVCMOS-O	VS1	Module Vendor-Specific 1.	6
48		VccRx1	+3.3V Receiver Power Supply.	2
49	LVCMOS-I	VS2	Module Vendor-Specific 2.	6
50	LVCMOS-I/O	VS3	Module Vendor-Specific 3.	6
51		GND	Module Ground (Logic and Power Return Path).	1
52	CML-O	Rx7+	Receive Differential Pairs from Module to Host.	
53	CML-O	Rx7-	Receive Differential Pairs from Module to Host.	
54		GND	Module Ground (Logic and Power Return Path).	1
55	CML-O	Rx5+	Receive Differential Pairs from Module to Host.	
56	CML-O	Rx5-	Receive Differential Pairs from Module to Host.	
57		GND	Module Ground (Logic and Power Return Path).	1
58		GND	Module Ground (Logic and Power Return Path).	1
59	CML-O	Rx6-	Receive Differential Pairs from Module to Host.	
60	CML-O	Rx6+	Receive Differential Pairs from Module to Host.	
61		GND	Module Ground (Logic and Power Return Path).	1
62	CML-O	Rx8-	Receive Differential Pairs from Module to Host.	
63	CML-O	Rx8+	Receive Differential Pairs from Module to Host.	
64		GND	Module Ground (Logic and Power Return Path).	1
65		NC	Not Connected.	6
66		Reserved	For Future Use. Not Connected.	6
67		VccTx1	+3.3V Transmitter Power Supply.	2
68		Vcc2	+3.3V Power Supply.	2
69	LVTTL-I	ePPS	Precision Time Protocol (PTP) Reference Clock Input.	
70		GND	Module Ground (Logic and Power Return Path).	1


71	CML-I	Tx7+	Transmit Differential Pairs from Host to Module.	
72	CML-I	Tx7-	Transmit Differential Pairs from Host to Module.	
73		GND	Module Ground (Logic and Power Return Path).	1
74	CML-I	Tx5+	Transmit Differential Pairs from Host to Module.	
75	CML-I	Tx5-	Transmit Differential Pairs from Host to Module.	
76		GND	Module Ground (Logic and Power Return Path).	1

- 1. QSFP-DD uses common ground (GND) for all signals and supply (power). All are common with the QSFP-DD module, and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, VccRx1, Vcc1, Vcc2, VccTx, and VccTx1 shall be applied concurrently. VccRx, VccRx1, Vcc1, Vcc2, VccTx, and VccTx1 are internally connected within the module. The connector Vcc pins are each rated for a maximum current of 1.0A.
- 3. Open drain. Requires 1.0k to 3.3k pull-up resistor to 3.3V on the host.
- 4. Indication from module to host. Requires 4.7k to 10k pull-up resistor to 3.3V on the host.
- 5. Open collector. Interrupt request from module to host. Requires 4.7k pull-up resistor to 3.3V on the host.
- 6. Reserved and NC pins may be terminated with 50Ω to ground on the host. Vendor-Specific and Reserved pads shall have an impedance to the GND that is greater than $10k\Omega$ and is less than 100pF.

Electrical Pad Layout


Recommended Power Supply Filter

Notes:

1. Filter capacitor values are informative vary depending on applications. Vcc1 and/or Vcc2 may be connected to the VccTx, VccTx1 or VccRx, VccRx1 provided the applicable derating of the maximum current limit is used.

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information ProLabs US Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600