

QDD-800GB-DR8-C

MSA and TAA 800GBase-DR8 PAM4 QSFP-DD Transceiver (SMF, 1310nm, 500m, MPO-16, DOM, CMIS 5.0)

Features:

- Compliant with IEEE 802.3cu-2021: 8x100GBASE-DR Optical Interface
- Compliant with IEEE 802.3ck-2022: 8x100GAUI-1 C2M Electrical Interface
- QSFP-DD MSA Compliant
- MPO Connector
- Compliant with CMIS 5.0
- Operating Temperature: 0 to 70 Celsius
- Class 1 Laser
- RoHS Compliant and Lead-Free

Applications:

• 800GBase Ethernet

Product Description

This MSA compliant compatible QSFP-DD transceiver provides 800GBase-DR8 throughput up to 500m over single-mode fiber (SMF) PAM4 using a wavelength of 1310nm via a MPO-16 connector. It can operate at temperatures between 0 and 70C. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Power Supply Voltage	Vcc	-0.5		3.6	V	
Relative Humidity (Non-Condensing)	RH	5		95	%	
Data Input Voltage Differential	V _{DIP} -V _{DIN}			1	V	
Control Input Voltage	Vı	-0.3		Vcc+0.5	V	
Control Output Current	I _O	-20		20	mA	
Signaling Speed Per Lane	DRL		53.125		GBd	
Operating Distance		2		500	m	

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
					1		Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V		
Instantaneous Peak Current	at Hot Plug	I _{CC_IP}			7200	mA	
Sustained Peak Current at H	ot Plug	I _{CC_SP}			5940	mA	
Maximum Power Dissipation	n	PD			18	W	
Maximum Power Dissipation	n (Low-Power Mode)	PD _{LP}			2.5	W	
Control Input Voltage - High		VIH	Vcc*0.7		Vcc+0.3	V	
Control Input Voltage - Low		VIL	-0.3		Vcc*0.3	V	
2-Wire Serial Interface Clock	Rate				400	kHz	
Power Supply Noise (1kHz to	o 1MHz, Pk-Pk)				66	mVp-p	
Transmitter (Module Input,	TP1)						
Differential Pk-Pk Input Volt	age Tolerance (TP1a)		750			mV	
Pk-Pk AC Common-Mode Voltage Tolerance	Low-Frequency (VCM _{LF})		32			mV	
	Full-Band (VCM _{FB})		80			mV	
Differential-Mode to Comm	on-Mode Return Loss	RLcd	802.3ck 120G-2		dB		
Effective Return Loss		ERL	8.5			dB	
Differential Termination Mis	smatch				10	%	
Single-Ended Voltage Tolera	nce Range		-0.4		3.3	V	
DC Common-Mode Voltage	Tolerance		-0.35		2.85	V	
Receiver (Module Output, T	P4)						
Pk-Pk AC Common-Mode	Low-Frequency (VCM _{LF})				32	mV	
Voltage	Full-Band (VCM _{FB})				80	mV	
Differential Pk-Pk Output	Short-Mode				600	mV	
Voltage	Long-Mode				845	mV	

Eye Height	EH	15			mV	
Vertical Eye Closure	VEC			12	dB	
Common-Mode to Differential-Mode Return Loss	RLDc	802.3ck 120G-1			dB	
Effective Return Loss	ERL	8.5			dB	
Differential Termination Mismatch				10	%	
Transition Time		8.5			ps	
DC Common-Mode Voltage Tolerance		-0.35		2.85	V	

Electrical Low-Speed Control and Sense Signal Specifications

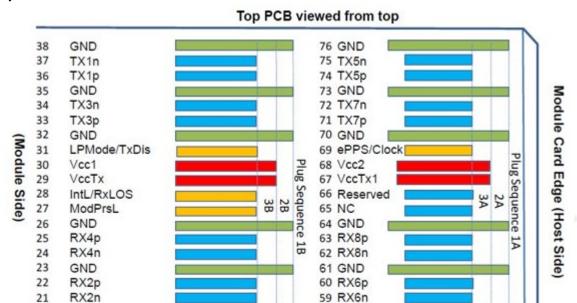
Parameter	Symbol	Min.	Max.	Unit	Notes
Module Output SCL and SDA	VOL	0	0.4	V	
Module Input SCL and SDA	VIL	-0.3	Vcc*0.3	V	
	VIH	Vcc*0.7	Vcc+0.5	V	
InitMode, ResetL, and ModSelL	VIL	-0.3	0.8	V	
	VIH	2	Vcc+0.3	V	
IntL	VOL	0	0.4	V	
	VOH	Vcc-0.5	Vcc+0.3	V	

Optical Characteristics

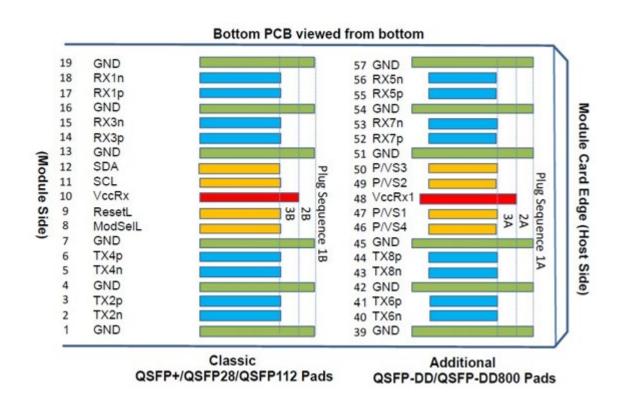
Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter							
Wavelength	λC	1304.5	1311	1317.5	nm		
Side-Mode Suppressi	Side-Mode Suppression Ratio					dB	
Average Launch Powe	er Per Lane	AOPL	-2.9		4.0	dBm	1
Outer Optical Modula Per Lane	ation Amplitude (OMAouter)	TOMA	-0.8		4.2	dBm	
Launch Power in	For Extinction Ratio >= 5dB	T _{OMA-TDECQ}	-2.2			dBm	
OMAouter minus TDECQ Per Lane	For Extinction Ratio < 5dB		-1.9				
Transmitter and Dispo (TDECQ) Per Lane	ersion Eye Closure for PAM4	TDECQ			3.4	dB	
TDECQ – 10log10(Ceq) Per Lane	Ceq			3.4	dB	
Average Launch Powe	er of Off Transmitter Per Lane	Toff			-15	dBm	
Extinction Ratio		ER	3.5			dB	
Transmitter Transition	n Time	Tr			17	ps	
RIN _{15.5} OMA		RIN			-136	dB/Hz	
Optical Return Loss To	olerance	ORLT			15.5	dB	
Transmitter Reflectan	ice	TR			-26	dB	2
Receiver							
Wavelength	λC	1304.5	1311	1317.5	nm		
Damage Threshold Pe	r Lane	AOP _D	5			dBm	
Average Receive Pow	er Per Lane	AOP _R	-5.9		4	dBm	
Receive Power (OMA	outer) Per Lane	OMA _R			4.2	dBm	
Receiver Reflectance		RR			-26	dB	
Receiver Sensitivity (C	SOMA			Max. (-3.9, SECQ – 5.3)	dBm	3	
Stressed Receiver Sen	sitivity (OMAouter) Per Lane	SRS			-1.9	dBm	4
Conditions of Stresse	d Receiver Sensitivity Test						
Stressed Eye Closure for PAM4 (SECQ) Per Lane Under Test		SECQ		3.4		dB	
SECQ – 10log10 (Ceq)	Per Lane Under Test	Ceq			3.4	dB	
OMAouter of Each Ag	gressor Lane			4.2		dB	

Notes:

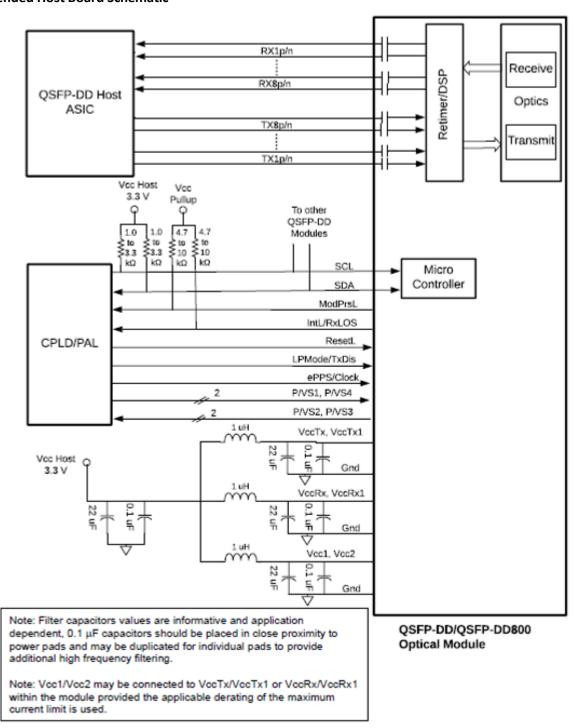
- 1. Average launch power, per lane (minimum), is informative and not the principal indicator of signal strength.
- 2. Transmitter reflectance is defined looking into the transmitter.
- 3. Receiver sensitivity (OMAouter) per lane (maximum) is informative and is defined for a transmitter with a value of SECQ up to 3.4dB.
- 4. Measured with conformance test signal at TP3 for the BER = 2.4×10^{-4} .

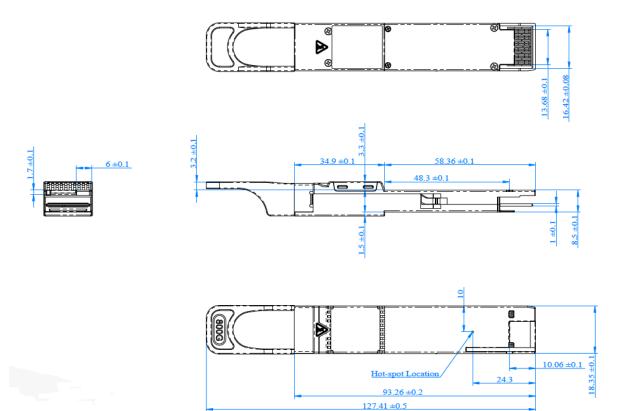

Pin Descriptions

Pin D	escriptions			
Pin	Symbol	Logic	Name/Description	Notes
1	GND		Module Ground.	
2	Tx2-	CML-I	Transmitter Inverted Data Input.	
3	Tx2+	CML-I	Transmitter Non-Inverted Data Input.	
4	GND		Module Ground.	
5	Tx4-	CML-I	Transmitter Inverted Data Input.	
6	Tx4+	CML-I	Transmitter Non-Inverted Data Input.	
7	GND		Module Ground.	
8	ModSelL	LVTTL-I	Module Select.	
9	ResetL	LVTTL-I	Module Reset.	
10	VccRx		+3.3V Receiver Power Supply.	
11	SCL	LVCMOS-I/O	2-Wire Serial Interface Clock.	
12	SDA	LVCMOS-I/O	2-Wire Serial Interface Data.	
13	GND		Module Ground.	
14	Rx3+	CML-O	Receiver Non-Inverted Data Output.	
15	Rx3-	CML-O	Receiver Inverted Data Output.	
16	GND		Module Ground.	
17	Rx1+	CML-O	Receiver Non-Inverted Data Output.	
18	Rx1-	CML-O	Receiver Inverted Data Output.	
19	GND		Module Ground.	
20	GND		Module Ground.	
21	Rx2-	CML-O	Receiver Inverted Data Output.	
22	Rx2+	CML-O	Receiver Non-Inverted Data Output.	
23	GND		Module Ground.	
24	Rx4-	CML-O	Receiver Inverted Data Output.	
25	Rx4+	CML-O	Receiver Non-Inverted Data Output.	
26	GND		Module Ground.	
27	ModPrsL	LVTTL-O	Module Present.	
28	IntL/RxLOS	LVTTL-O	Interrupt. Optionally configurable as RxLOSL via the management interface.	
29	VccTx		+3.3V Transmitter Power Supply.	
30	Vcc1		+3.3V Power Supply.	
31	LPMode/TxDis	LVTTL-I	Low-Power Mode. Optionally configurable as TxDis via the management interface.	
32	GND		Module Ground.	
33	Tx3+	CML-I	Transmitter Non-Inverted Data Input.	
34	Tx3-	CML-I	Transmitter Inverted Data Input.	
35	GND		Module Ground.	
36	Tx1+	CML-I	Transmitter Non-Inverted Data Input.	
37	Tx1-	CML-I	Transmitter Inverted Data Input.	
38	GND		Module Ground.	
39	GND		Module Ground.	
40	Tx6-	CML-I	Transmitter Inverted Data Input.	
41	Tx6+	CML-I	Transmitter Non-Inverted Data Input.	
42	GND		Module Ground.	


43	Tx8-	CML-I	Transmitter Inverted Data Input.
44	Tx8+	CML-I	Transmitter Non-Inverted Data Input.
45	GND		Module Ground.
46	P/VS4	LVCMOS/CML-I	Programmable. Module Vendor-Specific 4.
47	P/VS1	LVCMOS/CML-I	Programmable. Module Vendor-Specific 1.
48	VccRx1		+3.3V Receiver Power Supply.
49	P/VS2	LVCMOS/CML-O	Programmable. Module Vendor-Specific 2.
50	P/VS3	LVCMOS/CML-O	Programmable. Module Vendor-Specific 3.
51	GND		Module Ground.
52	Rx7+	CML-O	Receiver Non-Inverted Data Output.
53	Rx7-	CML-O	Receiver Inverted Data Output.
54	GND		Module Ground.
55	Rx5+	CML-O	Receiver Non-Inverted Data Output.
56	Rx5-	CML-O	Receiver Inverted Data Output.
57	GND		Module Ground.
58	GND		Module Ground.
59	Rx6-	CML-O	Receiver Inverted Data Output.
60	Rx6+	CML-O	Receiver Non-Inverted Data Output.
61	GND		Module Ground.
62	Rx8-	CML-O	Receiver Inverted Data Output.
63	Rx8+	CML-O	Receiver Non-Inverted Data Output.
64	GND		Module Ground.
65	NC		Not Connected.
66	Reserved		For Future Use.
67	VccTx1		+3.3V Power Supply.
68	Vcc2		+3.3V Power Supply.
69	ePPS/Clock	LVCMOS-I	1PPS PTP Clock or Reference Clock Input.
70	GND		Module Ground.
71	Tx7+	CML-I	Transmitter Non-Inverted Data Input.
72	Tx7-	CML-I	Transmitter Inverted Data Input.
73	GND		Module Ground.
74	Tx5+	CML-I	Transmitter Non-Inverted Data Input.
75	Tx5-	CML-I	Transmitter Inverted Data Input.
76	GND		Module Ground.

20


GND


58 GND

Recommended Host Board Schematic

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600