

### QSFP-40GBASE-BD-RX-C

MSA and TAA 40GBase-BX QSFP+ Monitor (MMF, 850nm, 100m, LC, Rx only, DOM)

#### **Features:**

- SFF-8436 Compliance
- Duplex LC Connector
- Multi-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free



## **Applications:**

- 40GBase Ethernet
- Access and Enterprise

### **Product Description**

This MSA Compliant QSFP+ transceiver provides 40GBase-BX throughput up to 100m over multi-mode fiber (MMF) using a wavelength of 850nm via an LC connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."



# **Absolute Maximum Ratings**

| Parameter                  | Symbol  | Min. | Тур. | Max. | Unit |
|----------------------------|---------|------|------|------|------|
| Supply Voltage             | VccT, R | -0.5 |      | 4    | V    |
| Storage Temperature        | Ts      | -40  |      | +85  | °C   |
| Case Operating Temperature | Тс      | 0    |      | +70  | °C   |
| Relative Humidity          | RH      | 0    |      | 85   | %    |

# **Electrical Characteristics**

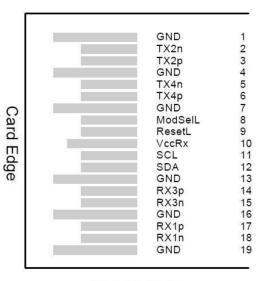
| Parameter                             | Symbol  | Min.  | Тур. | Max.  | Unit | Notes |  |  |
|---------------------------------------|---------|-------|------|-------|------|-------|--|--|
| Supply Voltage                        | VccT, R | +3.13 | 3.3  | +3.47 | V    |       |  |  |
| Supply Current                        | Icc     |       | 0.75 | 1.0   | Α    |       |  |  |
| Power Consumption                     | PD      |       | 2.5  | 3.5   | W    |       |  |  |
| Control I/O Voltage-High              | VIH     | 2.0   |      | Vcc   | V    |       |  |  |
| Control I/O Voltage-Low               | VIL     | 0     |      | 0.7   | ٧    |       |  |  |
| Inter-Channel Skew                    | TSK     |       |      | 150   | Ps   |       |  |  |
| RESETL Duration                       |         |       | 10   |       | Us   |       |  |  |
| RESETL De-assert time                 |         |       |      | 100   | ms   |       |  |  |
| Power On Time                         |         |       |      | 100   | ms   |       |  |  |
| Receiver                              |         |       |      |       |      |       |  |  |
| Single Ended Output Voltage Tolerance |         | 0.3   |      | 4     | V    |       |  |  |
| Rx Output Diff Voltage                | Vo      |       | 600  | 800   | mV   |       |  |  |
| Rx Output Rise and Fall Voltage       | Tr/Tf   |       |      | 35    | ps   | 1     |  |  |
| Total Jitter                          | TJ      |       |      | 0.7   | UI   |       |  |  |
| Deterministic Jitter                  | DJ      |       |      | 0.42  | UI   |       |  |  |

# Notes:

1. 20 ~ 80%

# Optical Characteristics (TOP = 0 to 70 °C, VCC = 3.0 to 3.6 Volts)

| Parameter                        | Symbol | Min. | Тур. | Max. | Unit | Notes |
|----------------------------------|--------|------|------|------|------|-------|
| Receiver                         |        |      |      |      |      |       |
| Optical Center Wavelength CH1    | λ      | 882  | 900  | 918  | nm   |       |
| Optical Center Wavelength CH2    | λ      | 832  | 850  | 868  | nm   |       |
| Receiver Sensitivity per Channel | R      |      | -11  |      | dBm  |       |
| Maximum Input Power              | PMAX   | +0.5 |      |      | dBm  |       |
| Receiver Reflectance             | Rrx    |      |      | -12  | dB   |       |
| LOS De-Assert                    | LOSD   |      |      | -14  | dBm  |       |
| LOS Assert                       | LOSA   | -30  |      |      | dBm  |       |
| LOS Hysteresis                   | LOSH   | 0.5  |      |      | dB   |       |


## **Notes:**

1. 12dB Reflection

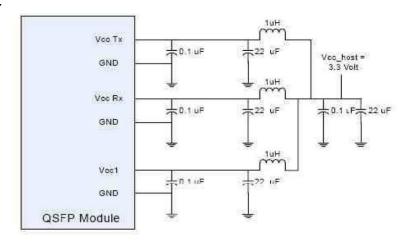
# **Electrical Pin-out Details**

| 38 | GND     |  |
|----|---------|--|
| 37 | TX1n    |  |
| 36 | TX1p    |  |
| 35 | GND     |  |
| 34 | TX3n    |  |
| 33 | TX3p    |  |
| 32 | GND     |  |
| 31 | LPMode  |  |
| 30 | Vcc1    |  |
| 29 | VccTx   |  |
| 28 | IntL    |  |
| 27 | ModPrsL |  |
| 26 | GND     |  |
| 25 | RX4p    |  |
| 24 | RX4n    |  |
| 23 | GND     |  |
| 22 | RX2p    |  |
| 21 | RX2n    |  |
| 20 | GND     |  |

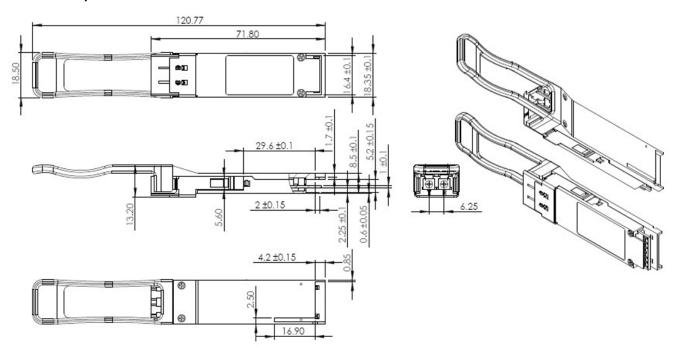
Top Side Viewed from Top



Bottom Side Viewed from Bottom


# **Pin Descriptions**

| Pin | Logic      | Symbol  | Name/Descriptions                                   | Ref. |
|-----|------------|---------|-----------------------------------------------------|------|
| 1   |            | GND     | Module Ground                                       | 1    |
| 2   | CML-I      | Tx2-    | Transmitter inverted data input                     |      |
| 3   | CML-I      | Tx2+    | Transmitter non-inverteddata input                  |      |
| 4   |            | GND     | Module Ground                                       | 1    |
| 5   | CML-I      | Tx4-    | Transmitter inverted data input                     |      |
| 6   | CML-I      | Tx4+    | Transmitter non-inverteddata input                  |      |
| 7   |            | GND     | Module Ground                                       | 1    |
| 8   | LVTTL-I    | MODSEIL | Module Select                                       | 2    |
| 9   | LVTTL-I    | ResetL  | Module Reset                                        | 2    |
| 10  |            | VCCRx   | +3.3v Receiver Power Supply                         |      |
| 11  | LVCMOS-I   | SCL     | 2-wire Serial interface clock                       | 2    |
| 12  | LVCMOS-I/O | SDA     | 2-wire Serial interface data                        | 2    |
| 13  |            | GND     | Module Ground                                       | 1    |
| 14  | CML-O      | RX3+    | Receiver non-inverteddata output                    |      |
| 15  | CML-O      | RX3-    | Receiver inverteddta output                         |      |
| 16  |            | GND     | Module Ground                                       | 1    |
| 17  | CML-O      | RX1+    | Receiver non-inverteddata output                    |      |
| 18  | CML-O      | RX1-    | Receiver inverteddata output                        |      |
| 19  |            | GND     | Module Ground                                       | 1    |
| 20  |            | GND     | Module Ground                                       | 1    |
| 21  | CML-O      | RX2-    | Receiver inverteddata output                        |      |
| 22  | CML-O      | RX2+    | Receiver non-inverteddata output                    |      |
| 23  |            | GND     | Module Ground                                       | 1    |
| 24  | CML-O      | RX4-    | Receiver inverteddata output                        |      |
| 25  | CML-O      | RX4+    | Receiver non-inverteddata output                    |      |
| 26  |            | GND     | Module Ground                                       | 1    |
| 27  | LVTTL-O    | ModPrsL | Module Present, internal pulled downto GND          |      |
| 28  | LVTTL-O    | IntL    | Interrupt output, should be pulled up on host board | 2    |
| 29  |            | VCCTx   | +3.3v Transmitter Power Supply                      |      |
| 30  |            | VCC1    | +3.3v Power Supply                                  |      |
| 31  | LVTTL-I    | LPMode  | Low Power Mode                                      | 2    |
| 32  |            | GND     | Module Ground                                       | 1    |
| 33  | CML-I      | Tx3+    | Transmitter non-inverteddata input                  |      |
| 34  | CML-I      | Tx3-    | Transmitter inverted data input                     |      |
| 35  |            | GND     | Module Ground                                       | 1    |
| 36  | CML-I      | Tx1+    | Transmitter non-inverteddata input                  |      |
| 37  | CML-I      | Tx1-    | Transmitter inverted data input                     |      |
| 38  |            | GND     | Module Ground                                       | 1    |


### **Notes:**

- GND is the symbol for single and supply(power) common for QSFP modules, Allare common within the QSFP module and all module voltages are referenced to this potential otherwise noted. Connect these directly to the host board signal common ground plane. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.</li>
- 2. VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently.

## **Recommended Circuit**



# **Mechanical Specifications**



#### **About ProLabs**

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

## **Complete Portfolio of Network Solutions**

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

### **Trusted Partner**

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.















#### **Contact Information**

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600