Pro**Labs**

QSFP28-100GB-BX-D-70-CN2-C

Ciena[®] Compatible TAA 100GBase-ZR4 Lite BX QSFP28 Transceiver (SMF, 1310.19nmTx/1272.55nmRx, 70km, LC, DOM)

Features:

- Compliant with QSFP28 MSA
- Hot Pluggable
- Supports 103.1Gbps Aggregate Bit Rate
- Up to 70km Reach for G.652 SMF
- Single 3.3V Power Supply
- Cooled 4x25Gbps LAN WDM Transmitter TOSA, Receiver ROSA
- Maximum Power Consumption: 5.0W
- Single LC Receptacle
- Operating Temperature: 0 to 70 Celsius
- RoHS Compliant and Lead-Free

A State of the second s

Applications:

- 100GBase Ethernet
- Datacenter

Product Description

This Ciena[®] QSFP28 transceiver provides 100GBase-BX ZR4L throughput up to 70km over single-mode fiber (SMF) using a wavelength of 1310.19nmTx/1272.55nmRx via an LC connector. It is guaranteed to be 100% compatible with the equivalent Ciena[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 012025

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Relative Humidity	RH	0		90	%	
Supply Voltage	Vcc	-0.5		3.6	V	
Power Consumption	Р			5.0	W	
Data Rate Per Lane	Gbps		25.78125			
Signaling Speed Accuracy		-100		100	ppm	

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Power Supply Current	lcc	mA		1443	mA	
Sustained Peak Current	lsp	mA		1650	mA	
Instantaneous Peak Current	lip			2000		
Power Dissipation	PW			5.0	W	
Low Power Dissipation	P _{DISS}			1.5	W	
Transmitter						
Differential Voltage Pk-Pk				900	mV	
Common-Mode Noise (RMS)				17.5	mV	
Eye Height		95			mV	
Eye Width		0.46			UI	
Differential Termination Mismatch				10	%	
Transition Time		10			ps	20-80%
Common-Mode Voltage		-0.3		2.8	V	
Receiver						
Differential Voltage Pk-Pk				900	mV	
Common-Mode Noise (RMS)				17.5	mV	
Eye Height		228			mV	
Eye Width		0.57			UI	
Differential Termination Mismatch				10	%	
Transition Time		9.5			ps	20-80%
Vertical Eye Closure	VEC			5.5	dB	
3.3V LVTTL						
Input High Voltage	VIH	2.0		Vcc+0.3	V	

Input Low Voltage	VIL	-0.3	0.8	V
Input Leakage Current	IIN	-10	+10	uA
Output High Voltage (IOH=100uA)	VOH	Vcc-0.5	Vcc+0.3	V
Output Low Voltage (IOL=100uA)	VOL	0	0.4	V
3.3V LVCMOS				
Input High Voltage	VIH	Vcc*0.7	Vcc+0.5	V
Input Low Voltage	VIL	-0.3	Vcc*0.3	V
Output High Voltage (IOH=100uA)	VOH	Vcc-0.5	Vcc+0.3	VOH
Output Low Voltage (IOL=100uA)	VOL	0	0.4	VOL
I/O Pin Capacitance	Ci		14	Ci

Optical Characteristics

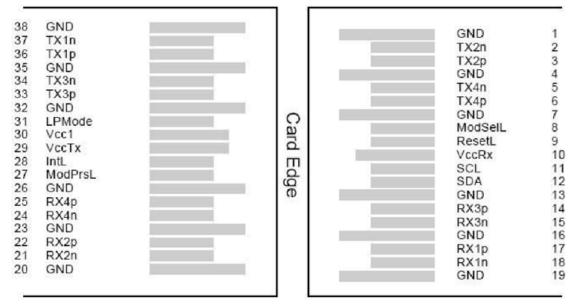
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Center Wavelength	λC	1294.53	1295.56	1296.59	nm	
		1299.02	1300.05	1301.09	-	
		1303.54	1304.58	1305.63		
		1308.09	1309.14	1310.19	-	
Side-Mode Suppression Ratio (Minimum)	SMSR	30				
Total Average Launch Power	Pt			13	dBm	
Average Launch Power Per Lane	Ра	1.0		7.0	dBm	1
Optical Modulation Amplitude Per Lane	OMA	3		8.8	dBm	2
Difference in Launch Power Between Any Two Lanes (OMA) (Maximum)				3.6	dB	
Average Launch Power of Off Transmitter Per Lane	Poff			-30	dBm	
Extinction Ratio	ER	6			dB	
Optical Return Loss Tolerance				20	dB	
Transmitter Reflectance				12	dB	3
Eye Diagram			≥10			
Eye Mask Margin		{0.25, 0.	4, 0.45, 0.25,	0.28, 0.4}		4
Receiver						
Center Wavelength	λC	1272.55	1273.55	1274.54	nm	
		1276.89	1277.89	1278.89		
		1281.25	1282.26	1283.27		
		1285.65	1286.66	1287.68		
Damage Threshold	Pmax	5.5			dBm	5

Average Receive Power Per Lane	Pin	-26	-5		6
Receive Power on OMA Per Lane	PinOMA		-3.5	dBm	
Receiver Reflectance	dB		-26		
Receiver Sensitivity for Each Lane (100GbE) at BER= 5x10 ⁻⁵ BER CD=[-356/66] ps/nm	S		-24	dBm	
LOS Hysteresis		0.5	5	dB	

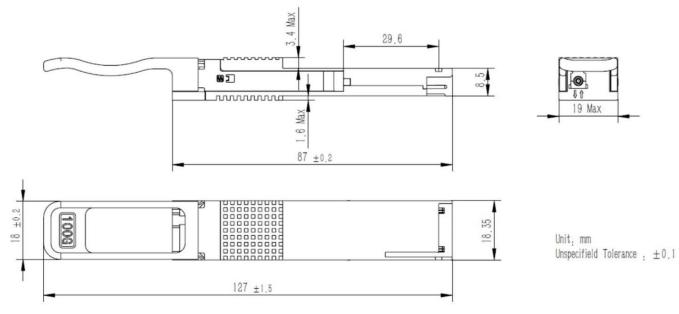
Notes:

- 1. Average launch power, per lane (minimum), is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Even if the TDP<1dB, the OMA (minimum) must exceed this value.
- 3. Transmitter reflectance is defined looking into the transmitter.
- 4. Eye mask hit ratio is 5E⁻⁵.
- 5. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
- 6. Average receive power, each lane (minimum), is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 7. Receiver sensitivity (OMA), per lane (maximum) at $5x10^{-5}$ BER, is a normative specification.

Pin Descriptions


Pin	Symbol	Name/Description	Notes
1	GND	Module Ground.	1
2	Tx2-	Transmitter Inverted Data Input.	
3	Tx2+	Transmitter Non-Inverted Data Input.	
4	GND	Module Ground.	1
5	Tx4-	Transmitter Inverted Data Input.	
6	Tx4+	Transmitter Non-Inverted Data Input.	
7	GND	Module Ground.	1
8	ModSelL	Module Select.	
9	ResetL	Module Reset.	
10	VccRx	+3.3V Receiver Power Supply.	2
11	SCL	2-Wire Serial Interface Clock.	
12	SDA	2-Wire Serial Interface Data.	
13	GND	Module Ground.	1
14	Rx3+	Receiver Non-Inverted Data Output.	
15	Rx3-	Receiver Inverted Data Output.	
16	GND	Module Ground.	1
17	Rx1+	Receiver Non-Inverted Data Output.	
18	Rx1-	Receiver Inverted Data Output.	
19	GND	Module Ground.	1
20	GND	Module Ground.	1
21	Rx2-	Receiver Inverted Data Output.	
22	Rx2+	Receiver Non-Inverted Data Output.	
23	GND	Module Ground.	1
24	Rx4-	Receiver Inverted Data Output.	
25	Rx4+	Receiver Non-Inverted Data Output.	
26	GND	Module Ground.	1
27	ModPrsL	Module Present.	
28	IntL/RxLOSL	Interrupt. Optionally configurable as RxLOSL via the management interface (SFF-8636).	
29	VccTx	+3.3V Transmitter Power Supply.	2
30	Vcc1	+3.3V Power Supply.	2
31	LPMode/TxDis	Low-Power Mode. Optionally configurable as TxDis via the management Interface (SFF-8636).	
32	GND	Module Ground.	1
33	Tx3+	Transmitter Non-Inverted Data Input.	
34	Tx3-	Transmitter Inverted Data Input.	
35	GND	Module Ground.	1

36	Tx1+	Transmitter Non-Inverted Data Input.	
37	Tx1-	Transmitter Inverted Data Input.	
38	GND	Module Ground.	1


Notes:

- GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the module, and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- VccRx, Vcc1, and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. VccRx, Vcc1, and VccTx may be internally connected within the module in any combination. The connector pins are each rated for a maximum current of 1000mA.

Electrical Pin-Out Details

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information ProLabs US Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600