

SFP-1G-SX-C

Cisco® SFP-1G-SX Compatible TAA 1000Base-SX SFP Transceiver (MMF, 850nm, 550m, LC, DOM)

Features:

- INF-8074 and SFF-8472 Compliance
- Duplex LC Connector
- VCSEL transmitter and PIN receiver
- Multi-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 1000Base-SX Ethernet
- 1x Fibre Channel
- Access and Enterprise

Product Description

This Cisco® SFP-1G-SX compatible SFP transceiver provides 1000Base-SX throughput up to 550m over multi-mode fiber (MMF) using a wavelength of 850nm via an LC connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Cisco®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc			4.0	V	
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Operating Relative Humidity	RH	0		95	%	
Power Supply Voltage	Vcc	3.10	3.3	3.47	V	
Supply Current	Icc			800	mA	
Power Dissipation	P _{DISS}			2.0	W	

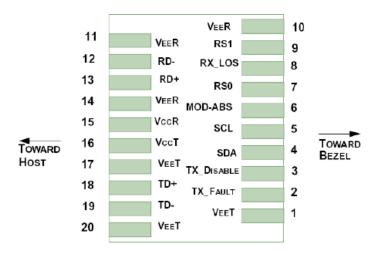
Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Launch Optical Power	Po	-9.5		-3.0	dBm	1
Center Wavelength	λC	840	850	860	nm	
Extinction Ratio	ER	9.0			dB	
Spectral Width (RMS)	Δλ			0.8	nm	
Mask Margin		10				
POUT of OFF Transmitter	Poff			-30	dBm	
Eye Diagram		Complies with IEEE 802.3				
Receiver						
Center Wavelength	λC	770	850	860	nm	
Receiver Sensitivity	S			-17	dBm	2
Overload Input Optical Power	Pin	0			dBm	
LOS De-Assert				-18	dBm	
LOS Assert		-30			dBm	
LOS Hysteresis		0.5		5	dB	3

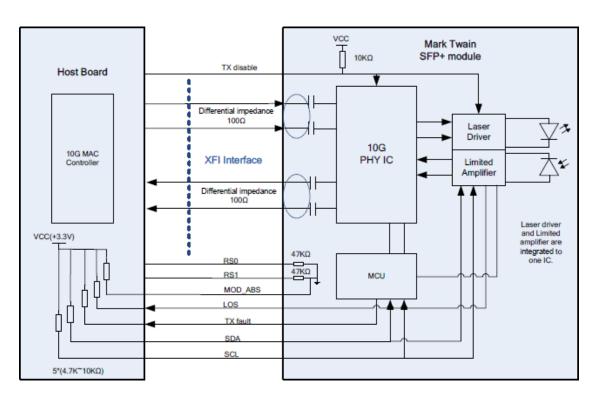
Notes:

- 1. With MMF.
- 2. Measured with BER<10E⁻¹².
- 3. The LOS Hysteresis minimizes "chatter" on the output line. In principle, Hysteresis alone does not guarantee chatter-free operation.

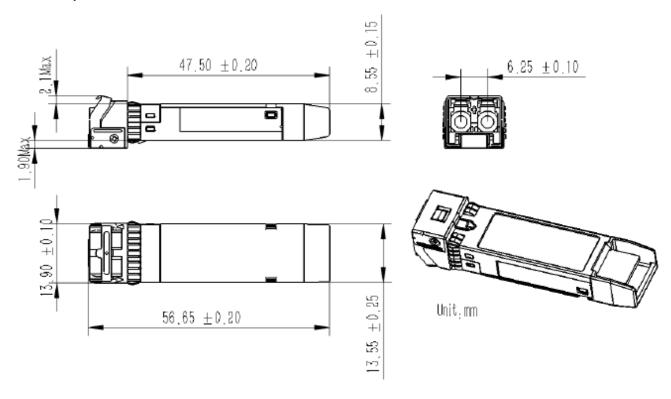
Pin Descriptions


Pin	Symbol	Name/Description	Notes
1	VeeT	Transmitter Signal Ground.	1
2	Tx_Fault	Transmitter Fault Out (OC).	2
3	Tx_Disable	Transmitter Disable In (LVTTL).	3
4	SDA	Module Definition Identifiers.	4
5	SCL	Module Definition Identifiers.	4
6	MOD_ABS	Module Definition Identifiers.	4
7	RS0	Receiver Rate Select (LVTTL). Transmitter Rate Select (LVTTL).	5
8	LOS	Loss of Signal Out (OC).	6
9	RS1	Receiver Rate Select (LVTTL). Transmitter Rate Select (LVTTL).	5
10	VeeR	Receiver Signal Ground.	7
11	VeeR	Receiver Signal Ground.	7
12	RD-	Receiver Negative Data Out (CML).	8
13	RD+	Receiver Positive Data Out (CML).	9
14	VeeR	Receiver Signal Ground.	7
15	VccR	Receiver Power Supply.	10
16	VccT	Transmitter Power Supply.	10
17	VeeT	Transmitter Signal Ground.	1
18	TD+	Transmitter Positive Data In (CML).	11
19	TD-	Transmitter Negative Data In (CML).	12
20	VeeT	Transmitter Signal Ground.	1

Notes:


- 1. These pins should be connected to the signal ground on the host board.
- 2. Logic "1" Output = Transmitter Fault.
 - Logic "0" Output = Normal Operation.
 - This pin is open collector compatible and should be pulled up to the Host_Vcc with a $10k\Omega$ resistor.
- 3. Logic "1" Input (or No Connection) = Laser Off.
 - Logic "0" Input = Laser On.
 - This pin is internally pulled up to the VccT with a $10k\Omega$ resistor.
- 4. Serial ID with SFF-8472 Diagnostics Module Definition pins should be pulled up to the Host_Vcc with $10k\Omega$ resistors.
- 5. These pins have an internal $33k\Omega$ pull-down to ground. A signal on either of these pins will not affect module performance.
- 6. This pin is open collector compatible and should be pulled up to the Host_Vcc with a $10k\Omega$ resistor.
- 7. These pins should be connected to the signal ground on the host board.
- 8. Light On = Logic "0" Output Receiver Data output is internally AC coupled and series terminated with a 50Ω resistor.
- 9. Light On = Logic "1" Output Receiver Data output is internally AC coupled and series terminated

- with a 50Ω resistor.
- 10. This pin should be connected to a filtered +3.3V power supply on the host board.
- 11. Logic "1" Input = Light On Transmitter Data inputs are internally AC coupled and terminated with a differential 100Ω resistor.
- 12. Logic "0" Input = Light On Transmitter Data inputs are internally AC coupled and terminated with a differential 100Ω resistor.


Electrical Pin-Out Details

Recommended Circuit Schematic

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600