Pro**Labs**

SFP-25GB-DW40-C

MSA and TAA 25GBase-DWDM SFP28 Transceiver C-Band 100GHz (SMF, 1545.32nm, 10km, LC, DOM)

Features:

- SFF-8432 and SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Commercial Temperature 0 to 70 Celsius
- Hot Pluggable
- Metal with Lower EMI
- Excellent ESD Protection
- RoHS Compliant and Lead Free

Applications:

- 25GBase-LR Ethernet
- Access, Metro and Enterprise

Product Description

This MSA Compliant SFP28 transceiver provides 25GBase-DWDM throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1545.32nm via an LC connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 090123

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Channel Wavelength (nm) Frequency (THZ) Channel Wavelength (nm) Frequency (THZ) 21 1560.61 192.1 41 1544.53 194.1 22 1559.79 192.2 42 1543.73 194.2 23 1558.98 192.3 43 1542.94 194.3 24 1558.17 192.4 44 1542.14 194.4 25 1557.36 192.5 45 1541.35 194.5 26 1556.55 192.6 46 1540.56 194.6 27 47 1555.75 192.7 1539.77 194.7 28 1554.94 192.8 48 1538.98 194.8 29 1554.13 192.9 49 1538.19 194.9 30 1553.33 193.0 50 1537.4 195.0 31 1552.52 193.1 51 1536.61 195.1 32 1551.72 193.2 52 1535.82 195.2 53 1535.04 33 1550.92 193.3 195.3 1550.12 1534.25 34 193.4 54 195.4 35 1549.32 55 193.5 1533.47 195.5 36 1548.51 193.6 56 1532.68 195.6 37 1547.72 57 193.7 1531.9 195.7 1546.92 58 38 193.8 1531.12 195.8 1530.33 39 1546.12 193.9 59 195.9 40 1545.32 194.0 60 1529.55 196.0

Wavelength Guide (100GHz ITU Channels)

Absolute Maximum Ratings

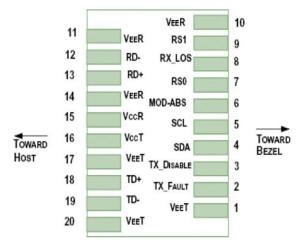
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.3		4.0	V	
Storage Temperature	TS	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Relative Humidity	RH	0		85	%	
Data Rate	BR	24.33		25.78	Gbps	

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply Voltage	V _{CC}	3.13		3.47		
Power Dissipation	PD			2.0	W	
Transmitter						
Data Input Swing Differential	VIN	190		1000	mV	
Differential line input Impedance	RIN	80	100	120	Ohm	
Transmitter Fault Output-High	VFaultH	2		Vcc+0.3	V	
Transmitter Fault Output-Low	VFaultL	VEE		VEE +0.8	V	
Transmitter Disable Voltage-High	VDisH	2		Vcc+0.3	V	
Transmitter Disable Voltage- low	VDisL	VEE		VEE +0.8	V	
Receiver						
Differential line Output Impedance	ROUT	80	100	120	Ohm	
Differential Data Output Voltage	VDR	350		850	mVp-p	
LOS Output Voltage-High	VLOSH	2		Vcc+0.3	V	
LOS Output Voltage-Low	VLOSL	VEE		VEE +0.8	V	
Others						
Cold-Start time	Tstart-cooled			35	S	

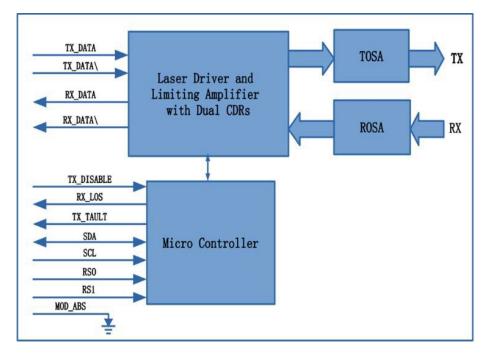
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Wavelength	λ	1529.55		1560.61	nm	
Center Wavelength Spacing		100		I	GHz	
Average Launched Power	PO	-1		5	dBm	
Extinction Ratio	ER	6			dB	
Average Launched Power (Laser Off)	Poff			-30	dBm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Relative Intensity Noise	RIN 20 OMA			-130	dB/Hz	
Receiver						
Center Wavelength	λιΝ	1260		1620	nm	
Receiver Overload	Poverload	2			dBm	
Receiver Sensitivity @5E-5 BOL	Psen BOL			-15	dBm	
Receiver Sensitivity @5E-5 EOL	Psen EOL			-14.5	dBm	1
Receiver Sensitivity @5E-5 EOL after 10km fiber transmission	Psen1 EOL			-9.0	dBm	1
Los Of Signal Assert	PA	-30			dBm	
Los Of Signal De-assert	PD			-16	dBm	
LOS -Hysteresis	PHys	0.5		6	dB	

Notes:

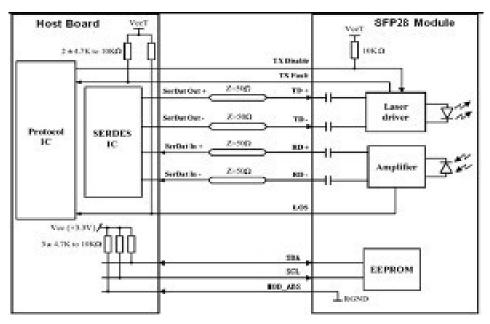

1. Measured at 5E-5, ER>4dB, PRBS 2³¹-1

Pin Descriptions

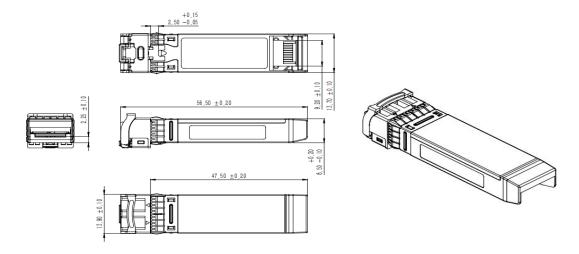
Pin	Symbol	Name/Descriptions	Ref.
1	VEET	Transmitter Ground	1
2	TFAULT	Transmitter Fault	2
3	TDIS	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	2
5	SCL	2-wire Serial Interface Clock Line	2
6	MOD_ABS	Module Absent. Grounded within the module	2
7	NA	Not Used	
8	RX_LOS	Loss of Signal indication. Logic 0 indicates normal operation.	4
9	NA	No Used	
10	VEER	Receiver Ground	1
11	VEER	Receiver Ground	1
12	RD-	Receiver Inverted DATA out. AC Coupled.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled.	
14	VEER	Receiver Ground	1
15	VCCR	Receiver Power Supply	5
16	Vcct	Transmitter Power Supply	5
17	VEET	Transmitter Ground	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	VEET	Transmitter Ground	1


Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- T_{FAULT} is an open collector/drain output, which should be pulled up with a 4.7k 10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on $T_{DIS} > 2.0V$ or open, enabled on $T_{DIS} < 0.8V$.
- 4. LOS is open collector output. Should be pulled up with $4.7k 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 5. Internally connected



Pin-out of connector Block on Host board


Block Diagram of Transceiver

Recommended Interface Circuit

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information ProLabs US Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600