

SFP-25GBASE-ZR-CN2-C

Ciena® Compatible TAA 25GBase-ZR SFP28 Transceiver Rate Selectable (SMF, 1300nm, 80km, LC, DOM)

Features:

- MSA SFF-8472 Compliance
- Duplex LC Connector
- Single-mode Fiber
- Single 3.3V power supply
- 25GbE applications with FEC on host side
- EML Class 1 laser (IEC 60825) on transmitter side
- Built-in dual CDR
- Hot Pluggable
- Commercial Temperature 0 to 70 Celsius
- RoHS Compliant and Lead Free

Applications:

• 25GBase Ethernet

Product Description

This Ciena® SFP28 transceiver provides 25GBase-ZR throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1300nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Ciena® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.465	V	
Supply Voltage	Vcc	-0.5	4.0	V	
Power Supply Current	Icc		722	mA	
Storage Temperature	Tstg	-40	85	°C	
Operating Case Temperature	Тс	0	70	°C	
Operating Relative Humidity	RH	0	85	%	1

Notes:

- 1. Non-condensing.
- 2. Exceeding any one of these values may destroy the device permanently.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
CML Differential Inputs	VIN			900	mVp-p	1
Input Differential Impedance	ZIN	90		110	Ω	
Tx_Disable Input Voltage – High		2		Vcc+0.3	V	
Tx_Disable Input Voltage – Low		-0.3		0.8	V	
Receiver						
CML Differential Outputs	VOUT	300		900	mVp-p	2
Output Differential Impedance	ZOUT	90		110	Ω	
Rx_LOS Output Voltage – High		2.4		Vcc+0.3	V	
Rx_LOS Output Voltage – Low		-0.3		0.8	V	

Notes:

- 1. AC coupled inputs.
- 2. AC coupled outputs.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Signaling Speed	BRAVE		25.78		Gbps	
Center Wavelength	λC	1299.02	1300.05	1301.09	nm	
Spectral Width (-20dB)	Δλ			1	nm	
Side-Mode Suppression Ratio	SMSR	30				
Average Output Power @ 25.78Gbps	POUT	2		7	dBm	
Optical Modulation Amplitude	POMA	3.7		8.8	dBm	
Average Launch Power of Off Transmitter	Poff			-30	dBm	
Extinction Ratio	ER	8			dB	
Transmitter and Dispersion Penalty	TDP			3	dB	
Relative Intensity Noise	RIN			-130	dB/Hz	
Transmitter Reflectance				-26	dB	
Transmitter Eye Mask Definition: (X1, X2, X3, Y1, Y2, Y3)		(0.31, 0.40, 0.45, 0.34, 0.38, 0.40)				1
Receiver						
Signaling Speed	BRAVE		25.78		Gbps	
Center Wavelength	λC	1299.02	1300.05	1301.09	nm	
Receiver Sensitivity (OMA)	Rx_SENS			-26.5	dBm	2
Receiver Sensitivity After 80km Fiber Propagation (OMA)	Rx_SENS			-25.5	dBm	2
Damage Threshold	Pdamage	-5			dBm	
Receiver Overload	Pmax	-6			dBm	3
Receiver Reflectance				-26	dB	
LOS De-Assert	LOSD			-29.5	dBm	
LOS Assert	LOSA	-40		-32.5	dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes:

- 1. Hit ratio 5E⁻⁵ hits per sample.
- 2. Measured with data rate at 25.78Gbps, BER<5E⁻⁵, and PRBS 2³¹-1. Link attenuation needs to be less than the worst case specified for IEC 60793-2-50 type B1.1, type B1.3, or type B6_a single-mode fiber.
- 3. The module is targeted for long reach applications with high-power transmitters. Please ensure at least 10dB optical attenuation for optical loopback test.

Pin Descriptions

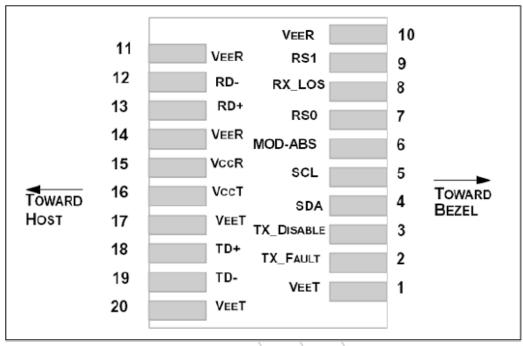
Pin	Symbol	Name/Description	Plug Sequence	Notes
1	VeeT	Transmitter Ground	1	5
2	Tx_Fault	Transmitter Fault Indication.	3	1
3	Tx_Disable	Transmitter Disable. Module disables on "high" or "open."	3	2
4	SDA	Module Definition 2. 2-Wire Serial Interface Data.	3	
5	SCL	Module Definition 1. 2-Wire Serial Interface Clock.	3	
6	MOD_ABS	Module Definition 0.	3	3
7	RS0	Rx Rate Select. LVTTL. Rate Select 0. Optionally controls the SFP28 module receiver. This pin is pulled low to the VeeT with a >30K resistor.	3	
8	Rx_LOS	Loss of Signal.	3	4
9	RS1	Tx Rate Select. LVTTL. Rate Select 1. Optionally controls the SFP28 module transmitter. This pin is pulled low to the VeeT with a >30K resistor.	1	
10	VeeR	Receiver Ground.	1	5
11	VeeR	Receiver Ground.	1	5
12	RD-	Inverted Received Data Out.	3	6
13	RD+	Received Data Out.	3	6
14	VeeR	Receiver Ground.	1	5
15	VccR	Receiver Power. 3.3V±5%.	2	7
16	VccT	Transmitter Power. 3.3V±5%.	2	7
17	VeeT	Transmitter Ground.	1	5
18	TD+	Transmit Data In.	3	8
19	TD-	Inverted Transmit Data In.	3	8
20	VeeT	Transmitter Ground.	1	5

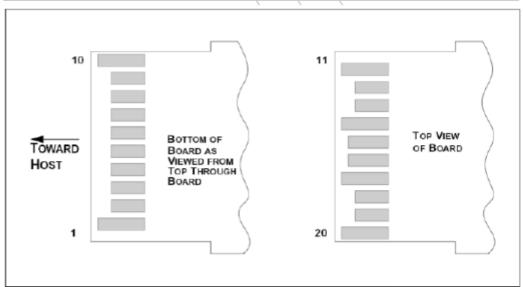
Notes:

- 1. Tx_Fault is an open collector/drain output which should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor on the host board. Pull-up voltage between 2.4V and VccT/R+0.3V. When "high," output indicates a laser fault of some kind. "Low" indicates normal operation. In the "low" state, the output will be pulled to <0.4V.
- 2. Tx_Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\Omega$ to $10k\Omega$ resistor. Its states are:

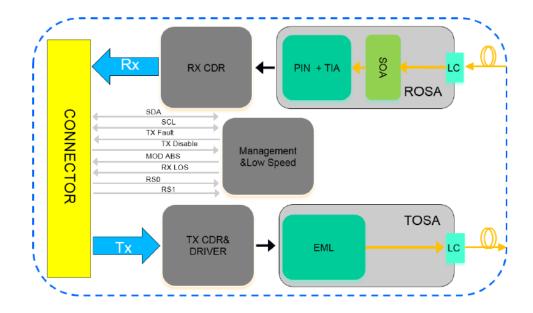
Low (-0.3V-0.8V): Transmitter On.

(>0.8V, <2.0V): Undefined.

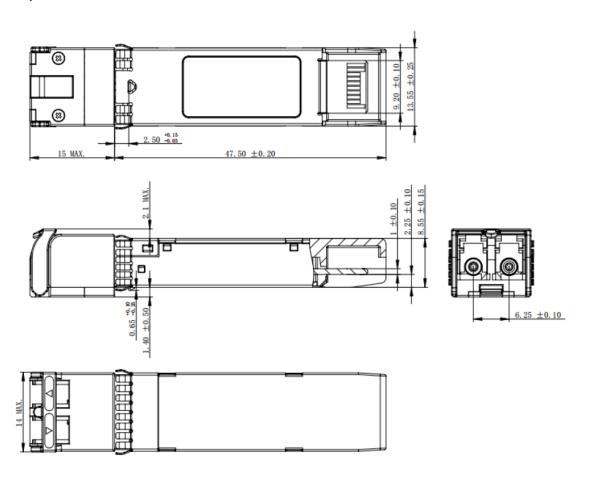

High (2.0V-VccT/R+0.3V): Transmitter Disabled.


Open: Transmitter Disabled.

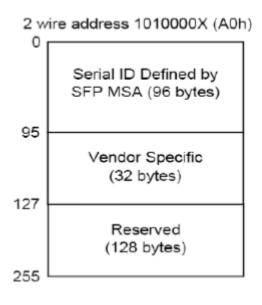
- 3. Module Absent. Connected to the VeeT or VeeR in the module.
- 4. Rx_LOS (Loss of Signal) is an open collector/drain output which should be pulled up with a $4.7k\Omega$ to $10k\Omega$ resistor. Pull-up voltage is between 2.4V and VccT/R+0.3V. When "high," this output indicates that the received optical power is below the worst-case receiver sensitivity (as defined by the standard in

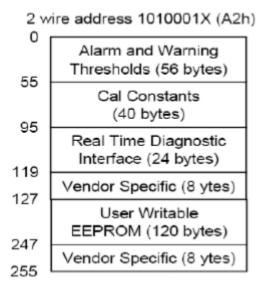

- use). "Low" indicates normal operation. In the "low" state, the output will be pulled to <0.4V.
- 5. VeeR and VeeT may be internally connected within the SFP28 module.
- 6. RD-/+. These are the differential receiver outputs. They are AC coupled 100Ω , differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 150mV and 500mV differential when properly terminated.
- 7. VccR and VccT are the receiver and transmitter power supplies. They are defined as $3.3V\pm5\%$ at the SFP+ connector pin. Maximum supply current is 500mA per PIN. Inductors with DC resistance of less than 1Ω should be used in order to maintain the required voltage at the SFP28 input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP28 transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP28 transceiver module.
- 8. TD-/+. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept swings of maximum 450mV single-ended, though it is recommended that values that are less than 900mV differential swing be used for best EMI performance.

SFP28 Transceiver Electrical Pad Layout



Functional Block Diagram


Mechanical Specifications



EEPROM Information

The serial interface uses the 2-wire serial CMOS EEPROM protocol. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not writing protected within the SFP28 transceiver. The negative edge clocks data from the SFP28 transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

The module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring, and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2H. The digital diagnostic memory map specific data field define as following. For detail EEPROM information, please refer to the related document of SFF 8472 Rev 12.4.

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600