

SFPP-XGS-ONU-MAC-I-SE-C

MSA and TAA 9.95Gbs/9.95Gbs XGS PON N1/N2 ONU SFP+ Stick with MAC (SMF, 1270nmTx/1577nmRx, SC, -40 to 85C) SyncE

Features:

- SC/UPC Connector
- 1270nm Burst-Mode Transmitter with DFB Laser
- 1577nm Continuous-Mode Receiver with APD-TIA
- Compliant with ITU-T G.9807.1 XGS-PON N1/N2
- Single 3.3V Power Supply
- Hot-Pluggable
- Operating Temperature: -40 to 85 Celsius
- RoHS Compliant and Lead-Free
- RoHS Compliant and lead-Free

Applications:

- XGS PON
- Access and Enterprise

Product Description

This MSA compliant SFP+ transceiver provides 9.95Gbs/9.95Gbs XGS-PON throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1270nmTx/1577nmRx via an SC connector with SyncE. This bidirectional unit must be used with another transceiver or network appliance of complementing wavelengths. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Relative Humidity (Non-Condensing)	%	5		85	%	
Operating Case Temperature	Тс	-40		85	°C	
Storage Temperature	Tstg	-40		85	°C	
Supply Voltage	V	0		3.6		
Transmission Distance	TD			20	km	
Data Rate	DR		9.9532 10.3125		Gbps	

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Power Supply Voltage		3.15	3.3	3.45	Vcc		
Power Supply Current	Icc			600	mA		
Power Consumption				2.25	W		
Transmitter							
Data Differential Input Swing		190		1000	mVp-p		
Data Differential Impedance		80	100	120	Ω		
Transmitter Disable Voltage – Low		0		0.8	V		
Transmitter Disable Voltage – High		2.0		Vcc	V		
Power Down Voltage – Low		0		0.8	V		
Power Down Voltage – High		2.0		Vcc	V		
Tx_Fault Assert Time				50	ms		
Tx_Fault Reset Time		10			μs		
Burst Turn On Time				51.2	ns		
Burst Turn Off Time				51.2	ns		
Tx Power Down Assert Time				512	ns	1	
Tx Power Down De-Assert Time				512	ns	2	
Receiver							
Data Output Differential Swing		300		850	mVp-p		
Loss of Signal (LOS) Assert Time				100	us		
Loss of Signal (LOS) De-Assert Time				100	us		
Differential Output Impedance		80	100	120	Ω		

Notes:

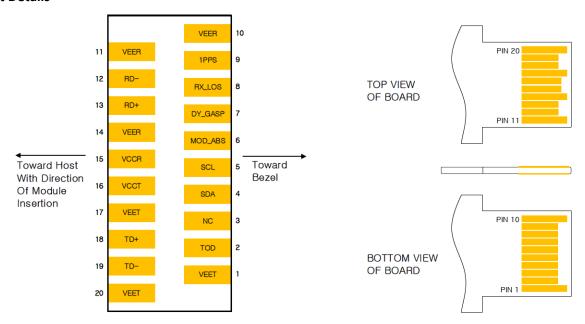
- 1. Measured to 10% of final supply current.
- 2. Measured to 90% of final supply current.

Optical Characteristics

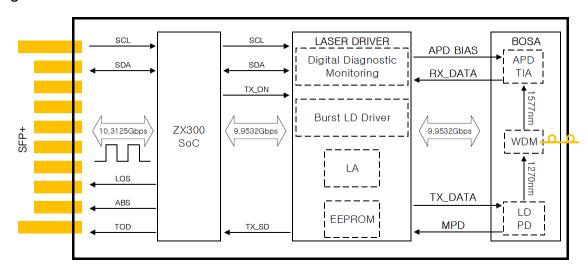
Symbol	Min.	Тур.	Max.	Unit	Notes		
λC	1260	1270	1290	nm			
			1	nm			
SMSR	30			dB			
AOP	4		9	dBm			
Poff			-45	dBm			
ER	6			dB	1		
Compliant with ITU-T G9807.1					1		
Receiver							
λC	1575	1577	1580	nm			
			-28.5	dBm	2		
	-9			dBm	2		
	-39			dBm			
			-29	dBm			
	35			dB			
	25			dB			
	31			dB			
	27			dB			
	31			dB			
	35			dB			
	35			dB			
	35			dB			
	λC SMSR AOP Poff ER	λC 1260 SMSR 30 AOP 4 Poff 6 ER 6 Compliant λC 1575 -9 -39 35 25 31 27 31 35 35 35	λC 1260 1270 SMSR 30 AOP 4 Poff 6 Compliant with ITU-T G9 λC 1575 1577 -9 -39 35 25 31 27 31 35 35 35	λC 1260 1270 1290 SMSR 30 9 Poff -45 ER 6 -45 Compliant with ITU-T G9807.1 λC 1575 1577 1580 -28.5 -9 -39 -29 35 25 31 27 31 35 35 35	λC 1260 1270 1290 nm SMSR 30 dB AOP 4 9 dBm Poff -45 dBm ER 6 dB Compliant with ITU-T G9807.1 λC 1575 1577 1580 nm -9 dBm dBm -39 dBm dBm 35 dB dB 25 dB dB 31 dB dB 327 dB dB 35 dB dB 35 dB dB 31 dB dB 35 dB dB 36 dB dB 37 dB dB 31 dB dB 35 dB dB 35 dB dB 35 dB dB		

Notes:

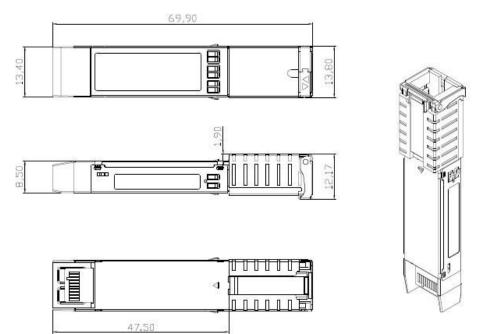
- 1. Measured with a PRBS 2³¹-1 test pattern @9.9532Gbps.
- Measured with a PRBS 2³¹-1 test pattern @9.9532Gbps, ER=6dB, and BER≤1.0E⁻³.


Pin Descriptions

Pin	Symbol	Logic	Name/Description	Notes
1	VeeT		Module Transmitter Ground.	
2	ToD	LVTTL-O	Time of Day.	1, 5
3	NC	LVTTL-I	Not Connected.	4
4	SDA	LVTTL-I/O	2-Wire Serial Interface Data Line.	2
5	SCL	LVTTL-I	2-Wire Serial Interface Clock Line.	2
6	MOD_ABS	LVTTL-O	Module Absent. Set to Low.	3
7	Dying_Gasp	LVTTL-I	Default: Not Used. Dying Gasp Function (Software Option).	5
8	Rx_LOS	LVTTL-O	Receiver Loss of Signal Indication.	3
9	1PPS	LVTTL-O	1 Pulse Per Second.	5
10	VeeR		Receiver Ground.	
11	VeeR		Receiver Ground.	
12	RD-	CML-O	Receiver Inverted Data Output.	
13	RD+	CML-O	Receiver Non-Inverted Data Output.	
14	VeeR		Receiver Ground.	
15	VccR		Receiver 3.3V Power Supply.	
16	VccT		Transmitter 3.3V Power Supply.	
17	VeeT		Transmitter Ground.	
18	TD+	CML-I	Transmitter Non-Inverted Data Input.	
19	TD-	CML-I	Transmitter Inverted Data Input.	
20	VeeT		Transmitter Ground.	


Notes:

- 1. Output from the MCU_UART_TX post.
- 2. $10k\Omega$ pull-up is applied inside the XGSPON stick.
- 3. It needs to be pulled up with $4.7k\Omega-10k\Omega$ to a Host_Vcc on the host board.
- 4. NC pin. It needs to be pulled up or down, or NC on the host board.
- 5. Software option: ToD/1PPS/Dying Gasp functions disabled by the software. If the ToD, 1PPS, or Dying Gasp function is required, you need to upgrade the software with the function enabled.


Pin-Out Details

Block Diagram

Mechanical Specifications

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com Telephone: +44 1285 719 600