

ZXS-QDL8ZZZZ-00-40-C

Infinera® ZXS-QDL8ZZZZ-00-40 Compatible TAA 400GBase-ER8 QSFP-DD Transceiver (SMF, 1270nm to 1330nm, 40km, LC, DOM, 0 to 70C)

Features:

- Hot-pluggable QSFP-DD Type 2 form factor
- Supports 425Gb/s aggregate bit rate
- Power dissipation < 13W
- Single 3.3V power supply
- Single-mode Fiber
- Aligned with IEEE 802.3bs
- Operating case temperature: 0C to 70C

Applications:

- 400GBase Ethernet
- Access and Enterprise

Product Description

This Infinera® ZXS-QDL8ZZZZ-00-40 compatible QSFP-DD transceiver provides 400GBase-ER8 throughput up to 40km over single-mode fiber (SMF) using a wavelength of 1270nm to 1330nm via an LC connector. It can operate at temperatures between 0 and 70C. Our transceiver is built to meet or exceed OEM specifications and is guaranteed to be 100% compatible with Infinera®. It has been programmed, uniquely serialized, and tested for data-traffic and application to ensure that it will initialize and perform identically. All of our transceivers comply with Multi-Source Agreement (MSA) standards to provide seamless network integration. Additional product features include Digital Optical Monitoring (DOM) support which allows access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S.-made or designated country end products.")

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Notes
Power Supply Voltage	VCC	-0.5	4.0	V	
Storage Temperature	Ts	-40	+85	°C	
Case Operating Temperature	Top	0	+70	°C	
Relative Humidity (non-condensing)	RH	15	85	%	
Receiver Damage Threshold, per Lane	P _{Rdmg}	6.3		dBm	
Bit Rate (all wavelengths combined)	BR		425	Gb/s	1
Bit Error Ratio	BER		2.4x10 ⁻⁴		2
Maximum Supported Distances					
Fiber Type					
SMF per G.652	Lmax1		10	km	

Notes:

1. Supports 400GBASE-LR8 per IEEE P802.3bs.
2. As defined by IEEE P802.3bs.

Electrical Characteristics (EOL, $T_{OP} = 0$ to $+70^\circ\text{C}$, $V_{CC} = 3.135$ to 3.465 Volts)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Supply Voltage	V _{CC}	3.135	3.3	3.465	V	
Supply Current	I _{CC}			3.83	A	
Module total power	P			13	W	1
Transmitter						
Signaling Rate, each Lane	V _{IN, pp, diff}	26.5625 ± 100 ppm			GBd	
Differential data input voltage per lane	TP1a	900			mVpp	1
Differential input return loss		Per equation (83E-5) IEEE802.3bm			dB	
Differential to common mode input return loss		Per equation (83E-6) IEEE802.3bm			dB	
Differential termination mismatch				10	%	
Module stress input test		Per 120E.3.4.1 IEEE802.3bs				3
Single-ended voltage tolerance range		-0.4		3.3	V	
DC common mode voltage		-350		2850	mV	4
Receiver						
Signaling Rate, each lane		26.5625 ± 100 ppm			GBd	
AC common-mode output voltage (RMS)				17.5	mV	
Differential output voltage				900	mV	
Near-end ESMW (Eye symmetry mask width)		0.265			UI	
Near-end Eye height, differential (min)		70			mV	
Far-end ESMW (Eye symmetry mask width)		0.2			UI	
Far-end Eye height, differential (min)		30			mV	
Far-end pre-cursor ISI ratio		-4.5		2.5	dB	
Differential output return loss		Per equation 83E-2 IEEE802.3bm				
Common to differential mode conversion return loss		Per equation 83E-3 IEEE802.3bm				
Differential termination mismatch				10	%	
Transition time (min, 20% to 80%)		9.5			ps	
DC common mode voltage (min)		-350		2850	mV	4

Notes:

1. Maximum total power value is specified across the full temperature and voltage range.
2. With the exception to 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
3. Meets specified BER
4. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

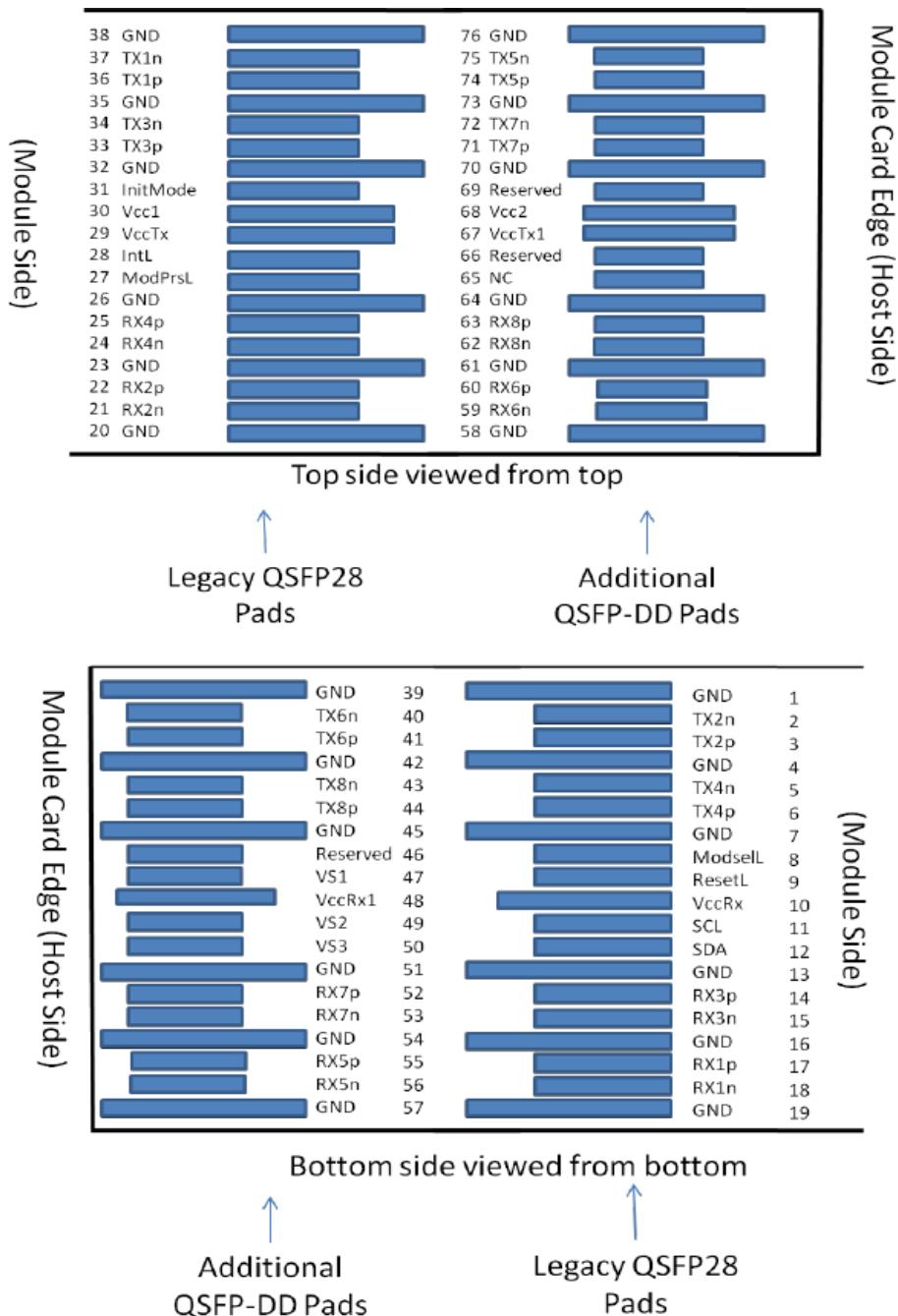
Optical Characteristics (EOL, $T_{OP} = 0$ to $+70^\circ\text{C}$, $V_{CC} = 3.135$ to 3.465 Volts)

Meets 400GBASE-LR8 as being defined by IEEE P802.3bs

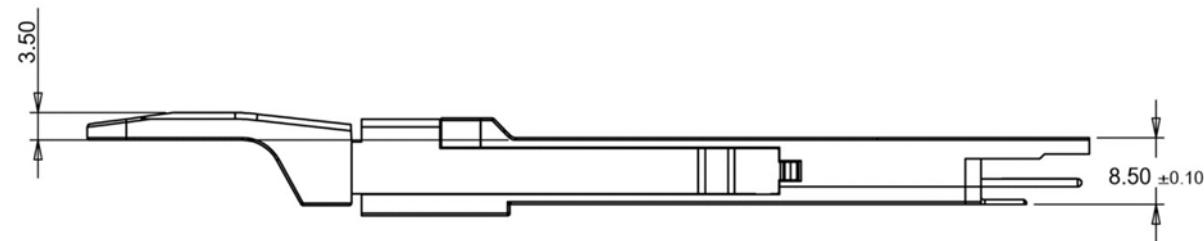
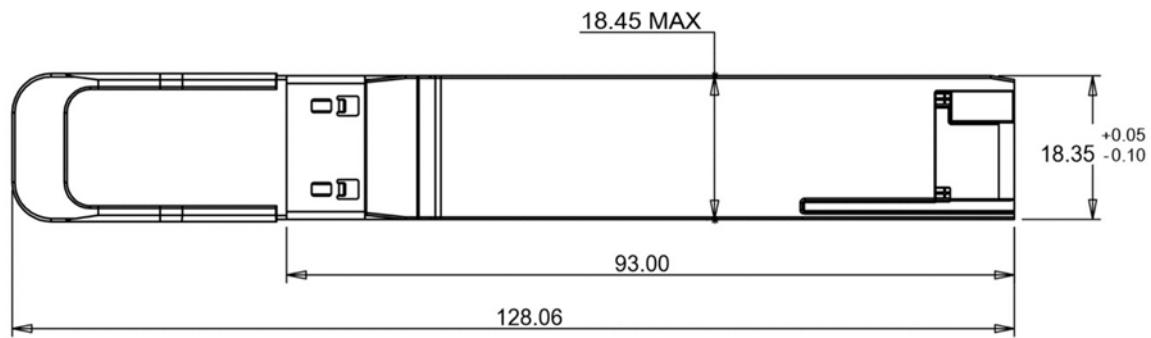
Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Signaling rate (each lane (range))		26.5625 ± 100 ppm			GBd	
Modulation Format		PAM4				
Lane wavelengths (range)		1272.55 to 1274.54 1276.89 to 1278.89 1281.25 to 1283.27 1285.65 to 1287.68 1294.53 to 1296.59 1299.02 to 1301.09 1303.54 to 1305.63 1308.09 to 1310.19			nm	
Side-mode suppression ratio (SMSR)		30			dB	
Total average launch power				13.2	dBm	
Average launch power, each lane				5.3	dBm	1
Average launch power, each lane		-2.8			dBm	2
Outer Optical Modulation Amplitude (OMAouter), each lane		0.2		5.7	dBm	3
Difference in launch power between any two lanes (OMAouter)				4	dB	
Launch power in OMAouter minus TDECQ, each lane		-1.1			dBm	
Transmitter and dispersion eye closure for PAM4 (TDECQ), each lane				3.3	dB	
Average launch power of OFF transmitter, each lane				-30	dBm	
Extinction ratio		3.5			dB	
RIN _{15.1} OMA				-132	dB/Hz	
Optical return loss tolerance				15.1	dB	
Transmitter reflectance				-26	dB	4
Receiver						
Signaling rate (each lane (range))		26.5625 ± 100 ppm			GBd	
Modulation Format		PAM4				
Lane wavelengths (range)		1272.55 to 1274.54 1276.89 to 1278.89 1281.25 to 1283.27 1285.65 to 1287.68 1294.53 to 1296.59 1299.02 to 1301.09 1303.54 to 1305.63 1308.09 to 1310.19			nm	
Damage threshold, each lane		6.3			dBm	5
Average receive power, each lane				5.3	dBm	
Average receive power, each lane		-9.1			dBm	6
Receive power (OMAouter), each lane				5.7	dBm	

Difference in receive power between any two lanes (OMAouter)				4.5	dBm	
Receiver reflectance				-26	dB	
Receiver sensitivity (OMAouter), each lane				-7.1	dBm	7
Stressed receiver sensitivity (OMAouter), each lane				-4.7	dBm	8
Conditions for Stress Receiver Sensitivity Test						
Stressed eye closure for PAM4 (SECQ), lane under test		3.3			dB	9
OMAouter of each aggressor lane		-0.2			dBm	9

Notes:


1. As the total average launch power limit has to be met, not all of the lanes can operate at the maximum average launch power, each lane.
2. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
3. Even if the TDECQ < 1 dB, the OMAouter (min) must exceed this value
4. Transmitter reflectance is defined looking into the transmitter
5. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
6. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
7. Receiver sensitivity (OMAouter), each lane (max) is informative.
8. Measured with conformance test signal at TP3 (see 122.8.9) for the BER specified in 122.1.1.
9. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Pin Descriptions



Pin	Logic	Symbol	Name/Descriptions	Plug Sequence
1		GND	Ground	1B
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B
4		GND	Ground	1B
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B
7		GND	Ground	1B
8	LVTTL-I	ModSelL	Module Select	3B
9	LVTTL-I	ResetL	Module Reset	3B
10		VccRx	+3.3V Power Supply Receiver	2B
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B
12	LVCMOS-I/O	SDA	2-wire serial interface data	3B
13		GND	Ground	1B
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B
15	CML-O	Rx3n	Receiver Inverted Data Output	3B
16	GND	Ground	1B	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B
18	CML-O	Rx1n	Receiver Inverted Data Output	3B
19		GND	Ground	1B
20		GND	Ground	1B
21	CML-O	Rx2n	Receiver Inverted Data Output	3B
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B
23		GND	Ground	1B
24	CML-O	Rx4n	Receiver Inverted Data Output	3B
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B
26		GND	Ground	1B
27	LVTTL-O	ModPrsL	Module Present	3B
28	LVTTL-O	IntL	Interrupt	3B
29		VccTx	+3.3V Power supply transmitter	2B
30		Vcc1	+3.3V Power supply	2B
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3B
32		GND	Ground	1B
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	3B
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B
35		GND	Ground	1B
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B
38		GND	Ground	1B
39		GND	Ground	1A
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A

41	CML-I	Tx6p	Transmitter Non-Inverted Data Input	3A
42		GND	Ground	1A
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	3A
45		GND	Ground	1A
46		Reserved	For future use	3A
47		VS1	Module Vendor Specific 1	3A
48		VccRx1	3.3V Power Supply	2A
49		VS2	Module Vendor Specific 2	3A
50		VS3	Module Vendor Specific 3	3A
51		GND	Ground	1A
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A
53	CML-O	Rx7n	Receiver Inverted Data Output	3A
54		GND	Ground	1A
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A
56	CML-O	Rx5n	Receiver Inverted Data Output	3A
57		GND	Ground	1A
58		GND	Ground	1A
59	CML-O	Rx6n	Receiver Inverted Data Output	3A
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A
61		GND	Ground	1A
62	CML-O	Rx8n	Receiver Inverted Data Output	3A
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A
67		GND	Ground	1A
68		NC	No Connect	3A
69		Reserved	For future use	3A
70		VccTx1	3.3V Power Supply	2A
71		Vcc2	3.3V Power Supply	2A
72		Reserved	For Future Use	3A
73		GND	Ground	1A
74	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A
75	CML-I	Tx7n	Transmitter Inverted Data Input	3A
76		GND	Ground	1A

MSA Compliant Connector

Mechanical Specifications

About ProLabs

Our extensive experience comes as standard. For over 20 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with more than 100 optical switching and transport platforms.

A Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 1.6T while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

The Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure compatible products, and immediate answers to your questions. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com

Telephone: 952-852-0252

ProLabs UK

Email: salesupport@prolabs.com

Telephone: +44 1285 719 600